Sliding Window to Get Equal Substrings Within MaxCost Budget
- 时间:2020-09-18 17:39:21
- 分类:网络文摘
- 阅读:96 次
You are given two strings s and t of the same length. You want to change s to t. Changing the i-th character of s to i-th character of t costs |s[i] – t[i]| that is, the absolute difference between the ASCII values of the characters.
You are also given an integer maxCost. Return the maximum length of a substring of s that can be changed to be the same as the corresponding substring of twith a cost less than or equal to maxCost.
If there is no substring from s that can be changed to its corresponding substring from t, return 0.
Example 1:
Input: s = “abcd”, t = “bcdf”, maxCost = 3
Output: 3
Explanation: “abc” of s can change to “bcd”. That costs 3, so the maximum length is 3.Example 2:
Input: s = “abcd”, t = “cdef”, maxCost = 3
Output: 1
Explanation: Each character in s costs 2 to change to charactor in t, so the maximum length is 1.Example 3:
Input: s = “abcd”, t = “acde”, maxCost = 0
Output: 1
Explanation: You can’t make any change, so the maximum length is 1.Constraints:
1 <= s.length, t.length <= 10^5
0 <= maxCost <= 10^6
s and t only contain lower case English letters.Hints:
Calculate the differences between a[i] and b[i].
Use a sliding window to track the longest valid substring.
This string problem can be solved by bruteforce and the two pointer sliding window algorithm.
Bruteforce Algorithm to Get Equal Substrings with Max Cost
We can bruteforce the possible substrings in O(N^2) time complexity. We can pre-calculate the cost array in O(N) time and O(N) space, but this is not essentially required as the cost for each replacement is trivial to calculate.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | class Solution { public: int equalSubstring(string s, string t, int maxCost) { unordered_map<int, int> cost; for (int i = 0; i < s.size(); ++ i) { cost[i] = abs(s[i] - t[i]); } int len = 0; for (int i = 0; i < s.size(); ++ i) { int curCost = 0; for (int j = i; j < s.size(); ++ j) { if (curCost + cost[j] <= maxCost) { curCost += cost[j]; len = max(len, j - i + 1); } else { break; } } } return len; } }; |
class Solution {
public:
int equalSubstring(string s, string t, int maxCost) {
unordered_map<int, int> cost;
for (int i = 0; i < s.size(); ++ i) {
cost[i] = abs(s[i] - t[i]);
}
int len = 0;
for (int i = 0; i < s.size(); ++ i) {
int curCost = 0;
for (int j = i; j < s.size(); ++ j) {
if (curCost + cost[j] <= maxCost) {
curCost += cost[j];
len = max(len, j - i + 1);
} else {
break;
}
}
}
return len;
}
};Given the size of the string could be up to 10^5, the O(N^2) is inefficient. For each pair of substring, we compute the total cost of replacement and record the maximum substring that does not go beyond the budget i.e. maxCost.
Sliding windows using Two Pointers for Max Substring
We can have two pointers, left and right. The greedy strategy to move the right pointer as possible as we can when the budget is under the control. If the budget is over e.g. maxCost, we move the left pointer one position to the right, and update the current cost, i.e. minus the left-most cost.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | class Solution { public: int equalSubstring(string s, string t, int maxCost) { unordered_map<int, int> cost; for (int i = 0; i < s.size(); ++ i) { cost[i] = abs(s[i] - t[i]); } int len = 0; int left = 0, right = 0; int cur = 0; while (right > s.size()) { cur += cost[right]; if (cur > maxCost) { cur -= cost[left]; left ++; } len = max(len, right - left + 1); right ++; } return len; } }; |
class Solution {
public:
int equalSubstring(string s, string t, int maxCost) {
unordered_map<int, int> cost;
for (int i = 0; i < s.size(); ++ i) {
cost[i] = abs(s[i] - t[i]);
}
int len = 0;
int left = 0, right = 0;
int cur = 0;
while (right > s.size()) {
cur += cost[right];
if (cur > maxCost) {
cur -= cost[left];
left ++;
}
len = max(len, right - left + 1);
right ++;
}
return len;
}
};The two pointer sliding window is efficient as it has O(N) time complexity.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:辽宁体育直播-辽宁体育在线直播观看「高清」 北京体育频道直播-北京体育在线直播观看「高清」 五星体育直播-五星体育在线直播观看「高清」 风云足球直播-风云足球在线直播观看「高清」 吉林篮球直播-吉林篮球在线直播观看「高清」 江苏体育直播-江苏体育在线直播观看「高清」 广州竞赛直播-广州竞赛频道在线直播观看「高清」 广东体育频道直播-广东体育频道在线直播观看「高清」 高尔夫网球频道直播-CCTV高尔夫网球在线直播「高清」 央视台球频道直播-斯诺克直播「高清」
- 评论列表
-
- 添加评论