Sliding Window to Get Equal Substrings Within MaxCost Budget

  • 时间:2020-09-18 17:39:21
  • 分类:网络文摘
  • 阅读:75 次

You are given two strings s and t of the same length. You want to change s to t. Changing the i-th character of s to i-th character of t costs |s[i] – t[i]| that is, the absolute difference between the ASCII values of the characters.

You are also given an integer maxCost. Return the maximum length of a substring of s that can be changed to be the same as the corresponding substring of twith a cost less than or equal to maxCost.

If there is no substring from s that can be changed to its corresponding substring from t, return 0.

Example 1:
Input: s = “abcd”, t = “bcdf”, maxCost = 3
Output: 3
Explanation: “abc” of s can change to “bcd”. That costs 3, so the maximum length is 3.

Example 2:
Input: s = “abcd”, t = “cdef”, maxCost = 3
Output: 1
Explanation: Each character in s costs 2 to change to charactor in t, so the maximum length is 1.

Example 3:
Input: s = “abcd”, t = “acde”, maxCost = 0
Output: 1
Explanation: You can’t make any change, so the maximum length is 1.

Constraints:
1 <= s.length, t.length <= 10^5
0 <= maxCost <= 10^6
s and t only contain lower case English letters.

Hints:
Calculate the differences between a[i] and b[i].
Use a sliding window to track the longest valid substring.

This string problem can be solved by bruteforce and the two pointer sliding window algorithm.

Bruteforce Algorithm to Get Equal Substrings with Max Cost

We can bruteforce the possible substrings in O(N^2) time complexity. We can pre-calculate the cost array in O(N) time and O(N) space, but this is not essentially required as the cost for each replacement is trivial to calculate.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
    int equalSubstring(string s, string t, int maxCost) {
        unordered_map<int, int> cost;
        for (int i = 0; i < s.size(); ++ i) {
            cost[i] = abs(s[i] - t[i]);
        }
        int len = 0;
        for (int i = 0; i < s.size(); ++ i) {
            int curCost = 0;
            for (int j = i; j < s.size(); ++ j) {
                if (curCost + cost[j] <= maxCost) {
                    curCost += cost[j];
                    len = max(len, j - i + 1);
                } else {                    
                    break;
                }
            }
        }
        return len;
    }
};
class Solution {
public:
    int equalSubstring(string s, string t, int maxCost) {
        unordered_map<int, int> cost;
        for (int i = 0; i < s.size(); ++ i) {
            cost[i] = abs(s[i] - t[i]);
        }
        int len = 0;
        for (int i = 0; i < s.size(); ++ i) {
            int curCost = 0;
            for (int j = i; j < s.size(); ++ j) {
                if (curCost + cost[j] <= maxCost) {
                    curCost += cost[j];
                    len = max(len, j - i + 1);
                } else {                    
                    break;
                }
            }
        }
        return len;
    }
};

Given the size of the string could be up to 10^5, the O(N^2) is inefficient. For each pair of substring, we compute the total cost of replacement and record the maximum substring that does not go beyond the budget i.e. maxCost.

Sliding windows using Two Pointers for Max Substring

We can have two pointers, left and right. The greedy strategy to move the right pointer as possible as we can when the budget is under the control. If the budget is over e.g. maxCost, we move the left pointer one position to the right, and update the current cost, i.e. minus the left-most cost.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
    int equalSubstring(string s, string t, int maxCost) {
        unordered_map<int, int> cost;
        for (int i = 0; i < s.size(); ++ i) {
            cost[i] = abs(s[i] - t[i]);
        }
        int len = 0;
        int left = 0, right = 0;
        int cur = 0;
        while (right > s.size()) {
            cur += cost[right];
            if (cur > maxCost) {
                cur -= cost[left];
                left ++;
            }
            len = max(len, right - left + 1);
            right ++;
        }
        return len;
    }
};
class Solution {
public:
    int equalSubstring(string s, string t, int maxCost) {
        unordered_map<int, int> cost;
        for (int i = 0; i < s.size(); ++ i) {
            cost[i] = abs(s[i] - t[i]);
        }
        int len = 0;
        int left = 0, right = 0;
        int cur = 0;
        while (right > s.size()) {
            cur += cost[right];
            if (cur > maxCost) {
                cur -= cost[left];
                left ++;
            }
            len = max(len, right - left + 1);
            right ++;
        }
        return len;
    }
};

The two pointer sliding window is efficient as it has O(N) time complexity.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
饮水养生:喝蜂蜜水的两个最佳时间  六类食物可以保护女性乳房不受伤  这两类人最好别吃枸杞 会产生副作用  夏季美味之毛豆的营养价值和食疗功效  食用小龙虾时需要注意的问题  如何将鲜活小龙虾彻底清洗干净?  老少皆宜的美食豆腐还可以当作治病良药  饮酒之道:取其益而去其害 扬长避短善用之  秋冬季节这八种人不适合吃辣椒  儿童不宜吃含化学合成甜味剂的食品 
评论列表
添加评论