Compute the Total Hamming Distance between All Pairs of Integers

  • 时间:2020-09-18 17:01:02
  • 分类:网络文摘
  • 阅读:104 次

The Hamming distance between two integers is the number of positions at which the corresponding bits are different. Now your job is to find the total Hamming distance between all pairs of the given numbers.

Example:
Input: 4, 14, 2

Output: 6
Explanation: In binary representation, the 4 is 0100, 14 is 1110, and 2 is 0010 (just
showing the four bits relevant in this case). So the answer will be:
HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.

Note:
Elements of the given array are in the range of 0 to 10^9
Length of the array will not exceed 10^4.

Bruteforce Algorithm to Compute the Hamming distances between Pairs of Integers

We need O(N^2) to iterate over each possible pair of integers, then we can add up the hamming distance with O(logV) complexity. The overall complexity is O(N^2LogV). We can use the std::bitset to perform the counting the set bits.

1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution {
public:
    int totalHammingDistance(vector<int>& nums) {
        int ans = 0;
        for (int i = 0; i < nums.size(); ++ i) {
            for (int j = i + 1; j < nums.size(); ++ j) {
                int t = nums[i] ^ nums[j];
                ans += bitset<32>(t).count();
            }
        }
        return ans;
    }
};
class Solution {
public:
    int totalHammingDistance(vector<int>& nums) {
        int ans = 0;
        for (int i = 0; i < nums.size(); ++ i) {
            for (int j = i + 1; j < nums.size(); ++ j) {
                int t = nums[i] ^ nums[j];
                ans += bitset<32>(t).count();
            }
        }
        return ans;
    }
};

Alternatively, we can use the compiler intrinsic i.e. __builtin_popcount to achieve the same task.

1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution {
public:
    int totalHammingDistance(vector<int>& nums) {
        int ans = 0;
        for (int i = 0; i < nums.size(); ++ i) {
            for (int j = i + 1; j < nums.size(); ++ j) {
                int t = nums[i] ^ nums[j];
                ans += __builtin_popcount(t);
            }
        }
        return ans;
    }
};
class Solution {
public:
    int totalHammingDistance(vector<int>& nums) {
        int ans = 0;
        for (int i = 0; i < nums.size(); ++ i) {
            for (int j = i + 1; j < nums.size(); ++ j) {
                int t = nums[i] ^ nums[j];
                ans += __builtin_popcount(t);
            }
        }
        return ans;
    }
};

Iterating the Bits and Perform the Math Counting

As the integers are 32-bit. We can iterate each number, and each bit to count the set bits. Suppose there are n integers, and for a bit, there are k set bits. Thus the overall hamming distances for this bit would have to be k * (n – k). The Hamming distance will be the sum of the XOR bits, thus the combinations between the 1’s and 0’s in the binary representation.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
    int totalHammingDistance(vector<int>& nums) {
        if (nums.empty()) return 0;
        int k = nums.size();
        int bits[32];
        std::fill(begin(bits), end(bits), 0);
        for (auto &n: nums) {
            int i = 0;
            while (n > 0) {
                bits[i ++] += n & 0x1;
                n >>= 1;
            }
        }
        int ans = 0;
        for (const auto &n: bits) {
            ans += n * (k - n);
        }
        return ans;
    }
};
class Solution {
public:
    int totalHammingDistance(vector<int>& nums) {
        if (nums.empty()) return 0;
        int k = nums.size();
        int bits[32];
        std::fill(begin(bits), end(bits), 0);
        for (auto &n: nums) {
            int i = 0;
            while (n > 0) {
                bits[i ++] += n & 0x1;
                n >>= 1;
            }
        }
        int ans = 0;
        for (const auto &n: bits) {
            ans += n * (k - n);
        }
        return ans;
    }
};

The overall complexity is O(N logV). And the space requirement is O(1) constant.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
枸杞子的食用方法以及滋补养生功效  身体健康无虚证的人不宜食用枸杞子  食疗养生枸杞子泡水喝有4大保健功效  调味品酱油对人体健康会有什么影响  便秘患者需要注意 常吃香蕉不能通便  食疗养生:女性常吃哪些食物能保健养颜  食药总局要求加强白酒质量安全监管  食品认证乱象:有钱就给有机食品证书  食品安全法中应该设立有奖举报制度  哪些健脑食品有助于增强孩子的记忆力 
评论列表
添加评论