Algorithm to Check if A String Matches a Pattern
- 时间:2020-10-09 18:35:39
- 分类:网络文摘
- 阅读:85 次
Given a pattern and a string str, find if str follows the same pattern. Here follow means a full match, such that there is a bijection between a letter in pattern and a non-empty word in str.
Example 1:
Input: pattern = “abba”, str = “dog cat cat dog”
Output: trueExample 2:
Input:pattern = “abba”, str = “dog cat cat fish”
Output: falseExample 3:
Input: pattern = “aaaa”, str = “dog cat cat dog”
Output: falseExample 4:
Input: pattern = “abba”, str = “dog dog dog dog”
Output: falseNotes:
You may assume pattern contains only lowercase letters, and str contains lowercase letters that may be separated by a single space.
Check Pattern Using Hash Maps
We can use two hash maps to associate with pattern to words and vice versa. Spliting the string by delimiter space, and go through each token/word to see if it matches the existing character. If not, we store the new mapping. If there is a mapping already – we check if it is the same and return false immediately when mapping does not match.
Some edge cases are to be handled – checking if the pattern sizes same as the number of the words in the sentence. Also, the same words cannot be mapped to different token/pattern. And also, different words cannot be mapped to a same token/pattern.
The following C++ uses istringstream to process a string into words/tokens. The complexity is O(N) where N is the number of the characters in the string – and O(N) space as we are using two hash maps.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | class Solution { public: bool wordPattern(string pattern, string str) { istringstream ss(str); string word; unordered_map<char, string> mapping; unordered_map<string, char> words; int i = 0; while (ss >> word) { if (i >= pattern.size()) { return false; } char pat = pattern[i ++]; if (mapping.find(pat) != mapping.end()) { if (word != mapping[pat]) { return false; } } if ((words.find(word) != words.end()) && (words[word] != pat)) { return false; } words[word] = pat; mapping[pat] = word; } return i == pattern.size(); } }; |
class Solution { public: bool wordPattern(string pattern, string str) { istringstream ss(str); string word; unordered_map<char, string> mapping; unordered_map<string, char> words; int i = 0; while (ss >> word) { if (i >= pattern.size()) { return false; } char pat = pattern[i ++]; if (mapping.find(pat) != mapping.end()) { if (word != mapping[pat]) { return false; } } if ((words.find(word) != words.end()) && (words[word] != pat)) { return false; } words[word] = pat; mapping[pat] = word; } return i == pattern.size(); } };
The following is the Python implementation of the word pattern algorithm – the code is concise but only using one dictionary/hashmap:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | class Solution: def wordPattern(self, pattern: str, str: str) -> bool: arr = str.split(' ') if (len(arr) != len(pattern)): return False data = {} idx = 0 for s in pattern: if not s in data: if arr[idx] in data.values(): return False data[s] = arr[idx] else: if data[s] != arr[idx]: return False idx += 1 return True |
class Solution: def wordPattern(self, pattern: str, str: str) -> bool: arr = str.split(' ') if (len(arr) != len(pattern)): return False data = {} idx = 0 for s in pattern: if not s in data: if arr[idx] in data.values(): return False data[s] = arr[idx] else: if data[s] != arr[idx]: return False idx += 1 return True
The algorithm complexity is O(N^2) as we are using in operator to check if a word exists in an array.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:杜蒉扬觯原文及翻译 公子重耳对秦客原文及翻译 有子之言似夫子原文及翻译 曾子易箦原文及翻译 晋献公杀世子申生原文及翻译 关于描写春节习俗的作文 我要的效果 我喜欢的经典作品550字 我们的学校小学作文 班里的新鲜事作文400字
- 评论列表
-
- 添加评论