Algorithm to Check if A String Matches a Pattern
- 时间:2020-10-09 18:35:39
- 分类:网络文摘
- 阅读:88 次
Given a pattern and a string str, find if str follows the same pattern. Here follow means a full match, such that there is a bijection between a letter in pattern and a non-empty word in str.
Example 1:
Input: pattern = “abba”, str = “dog cat cat dog”
Output: trueExample 2:
Input:pattern = “abba”, str = “dog cat cat fish”
Output: falseExample 3:
Input: pattern = “aaaa”, str = “dog cat cat dog”
Output: falseExample 4:
Input: pattern = “abba”, str = “dog dog dog dog”
Output: falseNotes:
You may assume pattern contains only lowercase letters, and str contains lowercase letters that may be separated by a single space.
Check Pattern Using Hash Maps
We can use two hash maps to associate with pattern to words and vice versa. Spliting the string by delimiter space, and go through each token/word to see if it matches the existing character. If not, we store the new mapping. If there is a mapping already – we check if it is the same and return false immediately when mapping does not match.
Some edge cases are to be handled – checking if the pattern sizes same as the number of the words in the sentence. Also, the same words cannot be mapped to different token/pattern. And also, different words cannot be mapped to a same token/pattern.
The following C++ uses istringstream to process a string into words/tokens. The complexity is O(N) where N is the number of the characters in the string – and O(N) space as we are using two hash maps.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | class Solution { public: bool wordPattern(string pattern, string str) { istringstream ss(str); string word; unordered_map<char, string> mapping; unordered_map<string, char> words; int i = 0; while (ss >> word) { if (i >= pattern.size()) { return false; } char pat = pattern[i ++]; if (mapping.find(pat) != mapping.end()) { if (word != mapping[pat]) { return false; } } if ((words.find(word) != words.end()) && (words[word] != pat)) { return false; } words[word] = pat; mapping[pat] = word; } return i == pattern.size(); } }; |
class Solution { public: bool wordPattern(string pattern, string str) { istringstream ss(str); string word; unordered_map<char, string> mapping; unordered_map<string, char> words; int i = 0; while (ss >> word) { if (i >= pattern.size()) { return false; } char pat = pattern[i ++]; if (mapping.find(pat) != mapping.end()) { if (word != mapping[pat]) { return false; } } if ((words.find(word) != words.end()) && (words[word] != pat)) { return false; } words[word] = pat; mapping[pat] = word; } return i == pattern.size(); } };
The following is the Python implementation of the word pattern algorithm – the code is concise but only using one dictionary/hashmap:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | class Solution: def wordPattern(self, pattern: str, str: str) -> bool: arr = str.split(' ') if (len(arr) != len(pattern)): return False data = {} idx = 0 for s in pattern: if not s in data: if arr[idx] in data.values(): return False data[s] = arr[idx] else: if data[s] != arr[idx]: return False idx += 1 return True |
class Solution: def wordPattern(self, pattern: str, str: str) -> bool: arr = str.split(' ') if (len(arr) != len(pattern)): return False data = {} idx = 0 for s in pattern: if not s in data: if arr[idx] in data.values(): return False data[s] = arr[idx] else: if data[s] != arr[idx]: return False idx += 1 return True
The algorithm complexity is O(N^2) as we are using in operator to check if a word exists in an array.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:7 Habits of Highly Productive Bloggers How a Business Owner Builds Relationships With Influential Blogg 5 Promising Tools to Help Boost Your Online Startup How to For-Loop and do Math/Arithmetic Operations in Windows/NT How to Find the Closest Sum of Three in an Array using Two Point The Lazy Singleton Design Pattern in Java How to Find out the Most Frequent Subtree Sum using Depth First A Microsoft Coding Interview Screening for Position Principal So The Brace Expansion Algorithms using Breadth First Search or Dep Coding Exercise: Sum of Digits in the Minimum Number
- 评论列表
-
- 添加评论