How to Find the Closest Sum of Three in an Array using Two Point

  • 时间:2020-09-25 11:32:47
  • 分类:网络文摘
  • 阅读:122 次

Given an array nums of n integers and an integer target, find three integers in nums such that the sum is closest to target. Return the sum of the three integers. You may assume that each input would have exactly one solution.

Example:
Given array nums = [-1, 2, 1, -4], and target = 1. The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).

The straightforward solution has to be the bruteforce algorithm, that exhausts every three numbers using O(N^3) loop – which is obviously too slow.

Two Pointer Algorithm in O(nlogN)

We first need to sort the entire array which takes O(nlogN). Once we have determined the first two numbers in O(N^2), we can search the rest in (logN) as the array is sorted. The following algorithm takes O(n*n*logN).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
    int threeSumClosest(vector<int>& nums, int target) {
        sort(begin(nums), end(nums));
        int sum = nums[0] + nums[1] + nums[2];
        for (int i = 0; i < nums.size() - 2; ++ i) {
            for (int j = i + 1; j < nums.size() - 1; ++ j) {
                int k = nums.size() - 1;
                while (j < k) {
                    int cur = nums[i] + nums[j] + nums[k];
                    if (cur == target) {
                        return target;
                    } else if (cur < target) {
                        j ++;
                    } else {
                        k --;
                    }
                    if (abs(cur - target) < abs(sum - target)) {
                        sum = cur;
                    }
                }
            }
        }
        return sum;
    }
};
class Solution {
public:
    int threeSumClosest(vector<int>& nums, int target) {
        sort(begin(nums), end(nums));
        int sum = nums[0] + nums[1] + nums[2];
        for (int i = 0; i < nums.size() - 2; ++ i) {
            for (int j = i + 1; j < nums.size() - 1; ++ j) {
                int k = nums.size() - 1;
                while (j < k) {
                    int cur = nums[i] + nums[j] + nums[k];
                    if (cur == target) {
                        return target;
                    } else if (cur < target) {
                        j ++;
                    } else {
                        k --;
                    }
                    if (abs(cur - target) < abs(sum - target)) {
                        sum = cur;
                    }
                }
            }
        }
        return sum;
    }
};

However, we don’t need to bruteforce the second number. Once the first number is settled, we can using two pointer algorithm to determine the remainding two numbers. If at anytime, we find a sum that is equal to the target, we immediately return the sum otherwise, we need to iteratively store the minimal sum difference.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
    int threeSumClosest(vector<int>& nums, int target) {
        sort(begin(nums), end(nums));
        int sum = nums[0] + nums[1] + nums[2];
        for (int i = 0; i < nums.size() - 2; ++ i) {
            int j = i + 1;
            int k = nums.size() - 1;
            while (j < k) {
                int cur = nums[i] + nums[j] + nums[k];
                if (cur == target) {
                    return target;
                } else if (cur < target) {
                    j ++;
                } else {
                    k --;
                }
                if (abs(cur - target) < abs(sum - target)) {
                    sum = cur;
                }
            }
        }
        return sum;
    }
};
class Solution {
public:
    int threeSumClosest(vector<int>& nums, int target) {
        sort(begin(nums), end(nums));
        int sum = nums[0] + nums[1] + nums[2];
        for (int i = 0; i < nums.size() - 2; ++ i) {
            int j = i + 1;
            int k = nums.size() - 1;
            while (j < k) {
                int cur = nums[i] + nums[j] + nums[k];
                if (cur == target) {
                    return target;
                } else if (cur < target) {
                    j ++;
                } else {
                    k --;
                }
                if (abs(cur - target) < abs(sum - target)) {
                    sum = cur;
                }
            }
        }
        return sum;
    }
};

The optimal algorithm using two pointer algorithm is O(nlogN).

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
Feel Like a Change? Why Not Try the Life of an Expat-preneur?  4 Tech Trends You Need To Get Prepared For  Blogger Sentenced To Two Years In Prison After Insulting Preside  Back to Basics: Blogging and Copyright Infringement  How To Jazz Up That Boring Business Blog  The Life Of A Million-Dollar Blogger  5 Types of Stories You Can Tell About Your Business  The Maximum Average Subtree of a Binary Tree  How to Design a Snake Game?  How to Design a Two-Sum Data Structure? 
评论列表
添加评论