How to Find out the Most Frequent Subtree Sum using Depth First
- 时间:2020-09-25 11:32:47
- 分类:网络文摘
- 阅读:99 次
Given the root of a tree, you are asked to find the most frequent subtree sum. The subtree sum of a node is defined as the sum of all the node values formed by the subtree rooted at that node (including the node itself). So what is the most frequent subtree sum value? If there is a tie, return all the values with the highest frequency in any order.
Examples 1
Input:5 / \ 2 -3return [2, -3, 4], since all the values happen only once, return all of them in any order.
Examples 2
Input:5 / \ 2 -5return [2], since 2 happens twice, however -5 only occur once.
Note: You may assume the sum of values in any subtree is in the range of 32-bit signed integer.
Most Frequent Subtree Sum using DFS Algorithm
We can use a hash map e.g. unordered_map in C++ to store the Subtree sum and their frequencies. Also, we need to keep track of the maximum frequency so that later we can iterate the map and push the sum (that is one of the most occurred) to the result.
We need to search the entire binary tree using Depth First Search algorithm, in recursion style.
The frequencies of the current subtree sum are updated before recursion calls.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<int> findFrequentTreeSum(TreeNode* root) { dfs(root); vector<int> r; for (auto it = sums.begin(); it != sums.end(); ++ it) { if (it->second == count) { // check if it is one of the max occurred number r.push_back(it->first); } } return r; } int dfs(TreeNode* root) { if (root == nullptr) return 0; int leftsum = dfs(root->left); int rightsum = dfs(root->right); int sum = root->val + leftsum + rightsum; if (sums.find(sum) == sums.end()) { sums[sum] = 1; } else { sums[sum] ++; } count = max(count, sums[sum]); // update max freq return sum; } private: // sum and the frequencies unordered_map<int, int> sums; // max frequency int count = 0; }; |
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<int> findFrequentTreeSum(TreeNode* root) { dfs(root); vector<int> r; for (auto it = sums.begin(); it != sums.end(); ++ it) { if (it->second == count) { // check if it is one of the max occurred number r.push_back(it->first); } } return r; } int dfs(TreeNode* root) { if (root == nullptr) return 0; int leftsum = dfs(root->left); int rightsum = dfs(root->right); int sum = root->val + leftsum + rightsum; if (sums.find(sum) == sums.end()) { sums[sum] = 1; } else { sums[sum] ++; } count = max(count, sums[sum]); // update max freq return sum; } private: // sum and the frequencies unordered_map<int, int> sums; // max frequency int count = 0; };
The runtime complexity for the above C++ DFS algorithm is O(N) where N is the number of the nodes in the binary tree i.e. each node has to be visited exactly once. And the space complexity is O(N) because a binary tree with N nodes will have N subtrees exactly and we are using a hashmap to store those sum values.
With C++ unordered_map, the default value (when it is integer) is zero, thus we can simply do this instead to update the counter:
1 | sums[sum] ++; |
sums[sum] ++;
The same DFS algorithm can be applied to solve this: The Maximum Average Subtree of a Binary Tree
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:给哪些网站暂时赚不到钱的站长鼓鼓劲 个人站长 建设网站贵在坚持 网站站长赚钱的6大好用的途径 整理6款站长赚钱方法 希望对你有所帮助 个人站长们常见的很多个网站盈利模式总结 春季饮食宜润肺,常吃炖梨既滋润又养人,口感甜香味道美 这道小学应用题比较难,解题关键是求相遇时间 豆腐搭配鸡蛋做出香酥可口的丸子,营养也很丰富 这道小学奥数题难倒多数学生,解题关键是比例 分享茄子的家常做法,吃起来不油腻,营养美味又下饭
- 评论列表
-
- 添加评论