How to Compute the Surface Area of 3D Shapes (Cubes Placed on Gr

  • 时间:2020-09-18 17:01:02
  • 分类:网络文摘
  • 阅读:94 次

On a N * N grid, we place some 1 * 1 * 1 cubes. Each value v = grid[i][j] represents a tower of v cubes placed on top of grid cell (i, j). Return the total surface area of the resulting shapes.

Example 1:
Input: [[2]]
Output: 10

Example 2:
Input: [[1,2],[3,4]]
Output: 34

Example 3:
Input: [[1,0],[0,2]]
Output: 16

Example 4:
Input: [[1,1,1],[1,0,1],[1,1,1]]
Output: 32

Example 5:
Input: [[2,2,2],[2,1,2],[2,2,2]]
Output: 46

Note:
1 <= N <= 50
0 <= grid[i][j] <= 50

When we place a single cube on the grid, the surface is 6 (4×1+2), when we place a 2×1 cubes on the grid, the surface is 10 – which is 4×2+2. That is, there is only 1 top and 1 bottom, but 4 times of the number cubes that stacked together – as the connected parts (vertically) are hidden.

Then, we can iterate each verticl stacked cubes, add the top and bottom, count the side surfaces by checking the four neighbours, and add the difference.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
    int surfaceArea(vector<vector<int>>& grid) {
        int dr[4] = {0, 1, 0, -1};
        int dc[4] = {1, 0, -1, 0};
        int N = grid.size();
        int ans = 0;
        for (int r = 0; r < N; ++ r) {
            for (int c = 0; c < N; ++ c) {
                if (grid[r][c] > 0) {
                    ans += 2;
                    for (int k = 0; k < 4; ++ k) {
                        int nr = r + dr[k];
                        int nc = c + dc[k];
                        int nv = 0;
                        if ((0 <= nr) && (0 <= nc) && 
                            (nr < N) && (nc < N)) {
                            nv = grid[nr][nc];
                        }
                        ans += max(grid[r][c] - nv, 0);
                    }
                }
            }
        }
        return ans;
    }
};
class Solution {
public:
    int surfaceArea(vector<vector<int>>& grid) {
        int dr[4] = {0, 1, 0, -1};
        int dc[4] = {1, 0, -1, 0};
        int N = grid.size();
        int ans = 0;
        for (int r = 0; r < N; ++ r) {
            for (int c = 0; c < N; ++ c) {
                if (grid[r][c] > 0) {
                    ans += 2;
                    for (int k = 0; k < 4; ++ k) {
                        int nr = r + dr[k];
                        int nc = c + dc[k];
                        int nv = 0;
                        if ((0 <= nr) && (0 <= nc) && 
                            (nr < N) && (nc < N)) {
                            nv = grid[nr][nc];
                        }
                        ans += max(grid[r][c] - nv, 0);
                    }
                }
            }
        }
        return ans;
    }
};

Slightly differently, we can check the neighbours of north and west only and minus those connected surfaces.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
    int surfaceArea(vector<vector<int>>& grid) {
        int N = grid.size();
        int ans = 0;
        for (int r = 0; r < N; ++ r) {
            for (int c = 0; c < N; ++ c) {
                if (grid[r][c] > 0) {
                    ans += 4 * grid[r][c] + 2;
                    if (r > 0) ans -= min(grid[r][c], grid[r - 1][c]) * 2;
                    if (c > 0) ans -= min(grid[r][c], grid[r][c - 1]) * 2;
                }
            }
        }
        return ans;
    }
};
class Solution {
public:
    int surfaceArea(vector<vector<int>>& grid) {
        int N = grid.size();
        int ans = 0;
        for (int r = 0; r < N; ++ r) {
            for (int c = 0; c < N; ++ c) {
                if (grid[r][c] > 0) {
                    ans += 4 * grid[r][c] + 2;
                    if (r > 0) ans -= min(grid[r][c], grid[r - 1][c]) * 2;
                    if (c > 0) ans -= min(grid[r][c], grid[r][c - 1]) * 2;
                }
            }
        }
        return ans;
    }
};

Both algorithms/approaches are based on the counting, which result in O(N^2) time and O(1) space requirement.

Similar post: How to Compute the Projection Area of 3D Shapes?

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
三个三位数相乘,积怎样最大  应用最小公倍数解题  射箭环数问题  牛吃草问题——牛顿问题  怎样算一年中任意一天是星期几  利用中国剩余定理的思想解题  数图形教学视频  平面图形的面积  数的进位制  最大公约数和最小公倍数 
评论列表
添加评论