How many different ways can £2 be made using any number of coins
- 时间:2020-09-10 12:45:51
- 分类:网络文摘
- 阅读:92 次
In the United Kingdom the currency is made up of pound (£) and pence (p). There are eight coins in general circulation:
1p, 2p, 5p, 10p, 20p, 50p, £1 (100p), and £2 (200p).
It is possible to make £2 in the following way:
1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1pHow many different ways can £2 be made using any number of coins?
Depth First Search Algorithm
Let’s define a function f takes two parameters (amount and last). Thus, we can perform a Depth First Search (DFS) search based on the following
The f(0, x) is 1. We avoid duplicate solution by limiting the current coin strictly less or equal than the last coin.
1 2 3 4 5 6 7 8 9 10 11 12 13 | function dfs(amount, last) { if (amount === 0) return 1; const coins = [1, 2, 5, 10, 20, 50, 100, 200]; let ans = 0; for (let x of coins) { // iterate over the coins if (amount- x >= 0 && x <= last) { // non-bigger ans += dfs(amount - x, x); // recursive dfs } } return ans; } console.log(dfs(200, 200)); |
function dfs(amount, last) { if (amount === 0) return 1; const coins = [1, 2, 5, 10, 20, 50, 100, 200]; let ans = 0; for (let x of coins) { // iterate over the coins if (amount- x >= 0 && x <= last) { // non-bigger ans += dfs(amount - x, x); // recursive dfs } } return ans; } console.log(dfs(200, 200));
The answer is 73682. We can also place a non-less coin and we need to call initially with last equal to 0:
1 2 3 4 5 6 7 8 9 10 11 12 13 | function dfs(amount, last) { if (amount === 0) return 1; const coins = [1, 2, 5, 10, 20, 50, 100, 200]; let ans = 0; for (let x of coins) { // iterate over the coins if (amount- x >= 0 && x >= last) { // non-smaller ans += dfs(amount - x, x); // recursive dfs } } return ans; } console.log(dfs(200, 0)); |
function dfs(amount, last) { if (amount === 0) return 1; const coins = [1, 2, 5, 10, 20, 50, 100, 200]; let ans = 0; for (let x of coins) { // iterate over the coins if (amount- x >= 0 && x >= last) { // non-smaller ans += dfs(amount - x, x); // recursive dfs } } return ans; } console.log(dfs(200, 0));
Counting Number of Coins using Dynamic Programming Algorithm
We notice that we can save the intermediate results so that we don’t respawn too many recursions. The easiest way is to pass a dictionary (or hash map) as a last parameter.
The following Javascript code implements the Dynamic Programming Algorithm to count the coins based on the Recursive Depth First Search with Memoization Technique.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | function dfs(amount, last, cached = {}) { if (amount === 0) return 1; const coins = [1, 2, 5, 10, 20, 50, 100, 200]; // if it has been calculated, then return it if (typeof cached[amount + "-" + last] !== "undefined") { return cached[amount+ "-" + last]; } let ans = 0; for (let x of coins) { if (amount - x >= 0 && x >= last) { ans += dfs(amount- x, x, cached); } } // save the result in the memo cached[amount+ "-" + last] = ans; return ans; } console.log(dfs(200, 0)); |
function dfs(amount, last, cached = {}) { if (amount === 0) return 1; const coins = [1, 2, 5, 10, 20, 50, 100, 200]; // if it has been calculated, then return it if (typeof cached[amount + "-" + last] !== "undefined") { return cached[amount+ "-" + last]; } let ans = 0; for (let x of coins) { if (amount - x >= 0 && x >= last) { ans += dfs(amount- x, x, cached); } } // save the result in the memo cached[amount+ "-" + last] = ans; return ans; } console.log(dfs(200, 0));
We can slightly rewrite this, using iterative approach. We sort the coins and start from the smallest coin. For each coin, we then incrementally update the answer.
1 2 3 4 5 6 7 8 9 10 | function dp(amount) { let f = Array(amount + 1).fill(0); f[0] = 1; for (let x of [1, 2, 5, 10, 20, 50, 100, 200]) { for (let a = x; a <= amount; ++ a) { f[a] += f[a - x]; } } return f[amount]; } |
function dp(amount) { let f = Array(amount + 1).fill(0); f[0] = 1; for (let x of [1, 2, 5, 10, 20, 50, 100, 200]) { for (let a = x; a <= amount; ++ a) { f[a] += f[a - x]; } } return f[amount]; }
The algorithmic complexity is O(NM) where N is the number of the coin-types and M is the amount. The space complexity is O(M).
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:Essential Traits That Will Help Bloggers Work From Home Successf Examining the Physical and Mental Health of Writers and Bloggers How will Blogging Change after the Pandemic? Digital Relationships: 5 Tips For Building A Better Veterinary B The 2020 Pandemic Further Boosts Earnings and Influence of Blogg What to Do When Your Blog Gets Too Big for You Alone Minimum Numbers of Function Calls to Make Target Array Harddrives will fail – it is just a matter of when Bruteforce/DFS/Backtracking Algorithm using Javascript to Solve DFS and BFS Algorithm to Find Numbers With Same Consecutive Diff
- 评论列表
-
- 添加评论