Dynamic Algorithm to Compute the Longest Common Subsequence

  • 时间:2020-10-11 15:25:20
  • 分类:网络文摘
  • 阅读:83 次

Given two strings text1 and text2, return the length of their longest common subsequence.

A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, “ace” is a subsequence of “abcde” while “aec” is not). A common subsequence of two strings is a subsequence that is common to both strings.

If there is no common subsequence, return 0.

Example 1:
Input: text1 = “abcde”, text2 = “ace”
Output: 3
Explanation: The longest common subsequence is “ace” and its length is 3.

Example 2:
Input: text1 = “abc”, text2 = “abc”
Output: 3
Explanation: The longest common subsequence is “abc” and its length is 3.

Example 3:
Input: text1 = “abc”, text2 = “def”
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

Constraints:
1 <= text1.length <= 1000
1 <= text2.length <= 1000
The input strings consist of lowercase English characters only.

Hints:
Try dynamic programming. DP[i][j] represents the longest common subsequence of text1[0 … i] & text2[0 … j].
DP[i][j] = DP[i – 1][j – 1] + 1 , if text1[i] == text2[j] DP[i][j] = max(DP[i – 1][j], DP[i][j – 1]) , otherwise

Longest Common Subsequence using Dynamic Programming Algorithm

Sure, we can bruteforce, try to find all the common subsequence from both strings, and compare if they match. But the complexity is so high that it won’t be practical.

One better solution is to use the dynamic programming algorithm where we use a two dimensional array dp[i][j] to store the maximum length of the common subsequence from s1[0..i] and s2[0..j].

Then, a O(N^2) qudaric loop is needed, if we have s1[i] == s2[j], we update the answer to dp[i-1][j-1], otherwise, it is the maximum of dp[i-1][j] and dp[i][j-1].

The DP formula is:

tex_8e6d85ad6e0da1d3c1256304c655009a Dynamic Algorithm to Compute the Longest Common Subsequence algorithms c / c++ dynamic programming string if tex_021a44ffdef562094f6c8ab3b80a6dc7 Dynamic Algorithm to Compute the Longest Common Subsequence algorithms c / c++ dynamic programming string
tex_79480eb51141ec04b4f9c94e3ac520ff Dynamic Algorithm to Compute the Longest Common Subsequence algorithms c / c++ dynamic programming string if tex_5b5347f626c5d1986bb78b560cf06bf0 Dynamic Algorithm to Compute the Longest Common Subsequence algorithms c / c++ dynamic programming string

By implementing the above equations, we have the following C++ code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1 = text1.size();
        int len2 = text2.size();
        vector<vector<int>> dp(len1, vector<int>(len2, 0));
        dp[0][0] = text1[0] == text2[0] ? 1 : 0;
        for (int i = 0; i < len1; ++ i) {
            for (int j = 0; j < len2; ++ j) {
                if (text1[i] == text2[j]) {
                    if ((i > 0) && (j > 0)) {
                        dp[i][j] = dp[i - 1][j - 1] + 1;
                    } else {
                        dp[i][j] = 1;
                    }
                } else {
                    if (i > 0) dp[i][j] = max(dp[i][j], dp[i - 1][j]);
                    if (j > 0) dp[i][j] = max(dp[i][j], dp[i][j - 1]);
                }
            }
        }
        return dp.back().back();
    }
};
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1 = text1.size();
        int len2 = text2.size();
        vector<vector<int>> dp(len1, vector<int>(len2, 0));
        dp[0][0] = text1[0] == text2[0] ? 1 : 0;
        for (int i = 0; i < len1; ++ i) {
            for (int j = 0; j < len2; ++ j) {
                if (text1[i] == text2[j]) {
                    if ((i > 0) && (j > 0)) {
                        dp[i][j] = dp[i - 1][j - 1] + 1;
                    } else {
                        dp[i][j] = 1;
                    }
                } else {
                    if (i > 0) dp[i][j] = max(dp[i][j], dp[i - 1][j]);
                    if (j > 0) dp[i][j] = max(dp[i][j], dp[i][j - 1]);
                }
            }
        }
        return dp.back().back();
    }
};

If we slightly increase the DP array by one, and update dp[i+1][j+1], we have a cleaner code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int n1 = text1.size(), n2 = text2.size();
        vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1));
        for (int i = 0; i < n1; ++ i) {
            for (int j = 0; j < n2; ++ j) {
                if (text1[i] == text2[j]) {
                    dp[i + 1][j + 1] = dp[i][j] + 1;
                } else {
                    dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]);
                }
            }            
        }
        return dp[n1][n2];
    }
};
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int n1 = text1.size(), n2 = text2.size();
        vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1));
        for (int i = 0; i < n1; ++ i) {
            for (int j = 0; j < n2; ++ j) {
                if (text1[i] == text2[j]) {
                    dp[i + 1][j + 1] = dp[i][j] + 1;
                } else {
                    dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]);
                }
            }            
        }
        return dp[n1][n2];
    }
};

Both implementations are having O(N^2) time and space complexity.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
诗词名句鉴赏:文籍虽满腹,不如一囊钱。  勾践灭吴原文及翻译  叔向贺贫原文及翻译  有意义的重阳节作文400字  快乐作文450字  读《朝花夕拾》有感两篇  写人作文我最敬佩的人英语作文  泰山独好作文700字  打陀螺作文800字  期待已久的植树节作文200字 
评论列表
添加评论