Dynamic Algorithm to Compute the Longest Common Subsequence

  • 时间:2020-10-11 15:25:20
  • 分类:网络文摘
  • 阅读:130 次

Given two strings text1 and text2, return the length of their longest common subsequence.

A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, “ace” is a subsequence of “abcde” while “aec” is not). A common subsequence of two strings is a subsequence that is common to both strings.

If there is no common subsequence, return 0.

Example 1:
Input: text1 = “abcde”, text2 = “ace”
Output: 3
Explanation: The longest common subsequence is “ace” and its length is 3.

Example 2:
Input: text1 = “abc”, text2 = “abc”
Output: 3
Explanation: The longest common subsequence is “abc” and its length is 3.

Example 3:
Input: text1 = “abc”, text2 = “def”
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

Constraints:
1 <= text1.length <= 1000
1 <= text2.length <= 1000
The input strings consist of lowercase English characters only.

Hints:
Try dynamic programming. DP[i][j] represents the longest common subsequence of text1[0 … i] & text2[0 … j].
DP[i][j] = DP[i – 1][j – 1] + 1 , if text1[i] == text2[j] DP[i][j] = max(DP[i – 1][j], DP[i][j – 1]) , otherwise

Longest Common Subsequence using Dynamic Programming Algorithm

Sure, we can bruteforce, try to find all the common subsequence from both strings, and compare if they match. But the complexity is so high that it won’t be practical.

One better solution is to use the dynamic programming algorithm where we use a two dimensional array dp[i][j] to store the maximum length of the common subsequence from s1[0..i] and s2[0..j].

Then, a O(N^2) qudaric loop is needed, if we have s1[i] == s2[j], we update the answer to dp[i-1][j-1], otherwise, it is the maximum of dp[i-1][j] and dp[i][j-1].

The DP formula is:

tex_8e6d85ad6e0da1d3c1256304c655009a Dynamic Algorithm to Compute the Longest Common Subsequence algorithms c / c++ dynamic programming string if tex_021a44ffdef562094f6c8ab3b80a6dc7 Dynamic Algorithm to Compute the Longest Common Subsequence algorithms c / c++ dynamic programming string
tex_79480eb51141ec04b4f9c94e3ac520ff Dynamic Algorithm to Compute the Longest Common Subsequence algorithms c / c++ dynamic programming string if tex_5b5347f626c5d1986bb78b560cf06bf0 Dynamic Algorithm to Compute the Longest Common Subsequence algorithms c / c++ dynamic programming string

By implementing the above equations, we have the following C++ code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1 = text1.size();
        int len2 = text2.size();
        vector<vector<int>> dp(len1, vector<int>(len2, 0));
        dp[0][0] = text1[0] == text2[0] ? 1 : 0;
        for (int i = 0; i < len1; ++ i) {
            for (int j = 0; j < len2; ++ j) {
                if (text1[i] == text2[j]) {
                    if ((i > 0) && (j > 0)) {
                        dp[i][j] = dp[i - 1][j - 1] + 1;
                    } else {
                        dp[i][j] = 1;
                    }
                } else {
                    if (i > 0) dp[i][j] = max(dp[i][j], dp[i - 1][j]);
                    if (j > 0) dp[i][j] = max(dp[i][j], dp[i][j - 1]);
                }
            }
        }
        return dp.back().back();
    }
};
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1 = text1.size();
        int len2 = text2.size();
        vector<vector<int>> dp(len1, vector<int>(len2, 0));
        dp[0][0] = text1[0] == text2[0] ? 1 : 0;
        for (int i = 0; i < len1; ++ i) {
            for (int j = 0; j < len2; ++ j) {
                if (text1[i] == text2[j]) {
                    if ((i > 0) && (j > 0)) {
                        dp[i][j] = dp[i - 1][j - 1] + 1;
                    } else {
                        dp[i][j] = 1;
                    }
                } else {
                    if (i > 0) dp[i][j] = max(dp[i][j], dp[i - 1][j]);
                    if (j > 0) dp[i][j] = max(dp[i][j], dp[i][j - 1]);
                }
            }
        }
        return dp.back().back();
    }
};

If we slightly increase the DP array by one, and update dp[i+1][j+1], we have a cleaner code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int n1 = text1.size(), n2 = text2.size();
        vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1));
        for (int i = 0; i < n1; ++ i) {
            for (int j = 0; j < n2; ++ j) {
                if (text1[i] == text2[j]) {
                    dp[i + 1][j + 1] = dp[i][j] + 1;
                } else {
                    dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]);
                }
            }            
        }
        return dp[n1][n2];
    }
};
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int n1 = text1.size(), n2 = text2.size();
        vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1));
        for (int i = 0; i < n1; ++ i) {
            for (int j = 0; j < n2; ++ j) {
                if (text1[i] == text2[j]) {
                    dp[i + 1][j + 1] = dp[i][j] + 1;
                } else {
                    dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]);
                }
            }            
        }
        return dp[n1][n2];
    }
};

Both implementations are having O(N^2) time and space complexity.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
如何为WordPress导航菜单、标签、出站等链接添加nofollow标签属性  如何设置WordPress的RSS feed更新频率  利用WordPress开发者调试模式解决PHP500内部服务器错误  正确屏蔽 WordPress 版本号的代码  WordPress插件WP First Letter Avatar代码版  让WordPress文章内链接在新窗口打开的方法  如何让wrodpress在分类列表页显示其下子分类文章列表  如何下载WordPress官网插件的旧版本  剧场有多少座位  荷叶覆盖面积正好占池塘面积的四分之一 
评论列表
添加评论