Depth First Search Algorithm to Find Leaves of a Binary Tree

  • 时间:2020-09-26 22:11:41
  • 分类:网络文摘
  • 阅读:130 次

Given a binary tree, collect a tree’s nodes as if you were doing this: Collect and remove all leaves, repeat until the tree is empty.

Example:
Input: [1,2,3,4,5]

 
          1
         / \
        2   3
       / \     
      4   5    

Output: [[4,5,3],[2],[1]]

complete-binary-tree-1 Depth First Search Algorithm to Find Leaves of a Binary Tree algorithms c / c++ java recursive

Example of a Complete Binary Tree

Explanation:
1. Removing the leaves [4,5,3] would result in this tree:

          1
         / 
        2          

2. Now removing the leaf [2] would result in this tree:

          1          

3. Now removing the leaf [1] would result in the empty tree:

          []         

Finding the leaves is easy, but it is not trivial to remove them and iteratively finding new leaves until the tree is empty. We may however simulate the process, which takes time and this requires somehow a complex piece of implementation.

Depth First Search Algorithm to Find the Binary Tree Leaves

We define a function that recursively computes the distances/depth between any nodes to the leaf nodes. Then we can associate the nodes with its depth. This will be implemented using recursion and the following Java code demonstrates the Depth First Search.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public List<List<Integer>> findLeaves(TreeNode root) {
        List<List<Integer>> r = new ArrayList<List<Integer>>();
        dfs(root, r);
        return r;
    }
    
    private int dfs(TreeNode root, List<List<Integer>> r) {
        if (root == null) return 0; // leave nodes are depth 0.
        // the depth is the max between two branches + 1
        int h = Math.max(dfs(root.left, r), dfs(root.right, r)) + 1;
        if (r.size() < h) {
            r.add(new ArrayList<Integer>());
        }
        r.get(h - 1).add(root.val); // put the 'leave' to its level
        return h;
    }
}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public List<List<Integer>> findLeaves(TreeNode root) {
        List<List<Integer>> r = new ArrayList<List<Integer>>();
        dfs(root, r);
        return r;
    }
    
    private int dfs(TreeNode root, List<List<Integer>> r) {
        if (root == null) return 0; // leave nodes are depth 0.
        // the depth is the max between two branches + 1
        int h = Math.max(dfs(root.left, r), dfs(root.right, r)) + 1;
        if (r.size() < h) {
            r.add(new ArrayList<Integer>());
        }
        r.get(h - 1).add(root.val); // put the 'leave' to its level
        return h;
    }
}

The DFS runs at O(N) time where N is the number of the nodes in the given binary tree. The space complexity is O(N) as well. The following is the C++ implementation of the same algorithm (so the time and space complexity is the same – O(N)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> findLeaves(TreeNode* root) {
        vector<vector<int>> res;
        dfs(root, res);
        return res;
    }
    
    int dfs(TreeNode* root, vector<vector<int>> &r) {
        if (root == NULL) { // leave nodes are depth 0.
            return 0;
        }
        int lv = dfs(root->left, r);
        int rv = dfs(root->right, r);        
        int h = 1 + max(lv, rv);
        if (h > r.size()) {
            r.push_back({});  // allocate for the new level
        }
        r[h - 1].push_back(root->val);
        return h;        
    }
};
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> findLeaves(TreeNode* root) {
        vector<vector<int>> res;
        dfs(root, res);
        return res;
    }
    
    int dfs(TreeNode* root, vector<vector<int>> &r) {
        if (root == NULL) { // leave nodes are depth 0.
            return 0;
        }
        int lv = dfs(root->left, r);
        int rv = dfs(root->right, r);        
        int h = 1 + max(lv, rv);
        if (h > r.size()) {
            r.push_back({});  // allocate for the new level
        }
        r[h - 1].push_back(root->val);
        return h;        
    }
};

The Depth First Search Algorithm is usually implemented using Recursion where a stack will be generated and maintained by the compiler automatically. You could, however, convert the recursion into the iterative approach by manually operating the stack.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
放青蛙作文150字  爱之伟大——读《地震中的父与子》有感700字  游泗北新城记作文500字  SEO收录异常诊断:负载均衡架构导致的SEO问题及解决方案  宝塔面板出现漏洞,站长如何做才能让网站更加安全?  掌握这7大SEO优化技巧,提高网站自然排名  网络推广SEO优化是怎么做的?  工信部ICP备案备案系统全新改版,速度更快,用户体验更好  影响网站排名的反向链接细节因素盘点  seo优化六步走网站优化基础策略分享 
评论列表
添加评论