How to Multiply Two Matrices in C++?
- 时间:2020-09-23 15:11:59
- 分类:网络文摘
- 阅读:84 次
Given two sparse matrices A and B, return the result of AB. You may assume that A’s column number is equal to B’s row number.
Example:
Input:
1 2 3 4 A = [ [ 1, 0, 0], [-1, 0, 3] ]A = [ [ 1, 0, 0], [-1, 0, 3] ]
1 2 3 4 5 B = [ [ 7, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 1 ] ]B = [ [ 7, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 1 ] ]Output:
| 1 0 0 | | 7 0 0 | | 7 0 0 | AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 | | 0 0 1 |
The Matrix Multiplication Algorithm in C++
Given two matrices, if either one of them is empty, the multiplication result should be empty as well. The result matrix dimension is the [rowA, colB] and each element in the matrix should be the sum of the dot products for each row in A and each column in B i.e. r[i][j] = sum(A[i][k] * B[k][j]) where k is within [0, colA).
The straightforward/naive implementation of two matrix muplication using std::vector is as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | class Solution { public: vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) { vector<vector<int>> r; int rowA = A.size(); if (rowA == 0) return r; int colA = A[0].size(); if (colA == 0) return r; int rowB = B.size(); if (rowB == 0) return r; int colB = B[0].size(); if (colB == 0) return r; r.resize(rowA); for (int i = 0; i < rowA; ++ i) { r[i].resize(colB); } for (int i = 0; i < rowA; ++ i) { for (int j = 0; j < colB; ++ j) { for (int k = 0; k < colA; ++ k) { r[i][j] += A[i][k] * B[k][j]; } } } return r; } }; |
class Solution { public: vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) { vector<vector<int>> r; int rowA = A.size(); if (rowA == 0) return r; int colA = A[0].size(); if (colA == 0) return r; int rowB = B.size(); if (rowB == 0) return r; int colB = B[0].size(); if (colB == 0) return r; r.resize(rowA); for (int i = 0; i < rowA; ++ i) { r[i].resize(colB); } for (int i = 0; i < rowA; ++ i) { for (int j = 0; j < colB; ++ j) { for (int k = 0; k < colA; ++ k) { r[i][j] += A[i][k] * B[k][j]; } } } return r; } };
The time complexity is O(rowA * colB * colA).
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:Back to the Basics: How to Get More Twitter Followers Trump Steals Spotlight During Democratic Debate Dorsey’s 8% Twitter Layoff Finding Out Which Content Is Unacceptable For Your Website The Custom Sort String Algorithm with Count and Write Algorithms to Count the Number of Palindromic Substrings Depth First Search Algorithm to Find Leaves of a Binary Tree Understanding The Math Before Investing In Stocks Don’t Owe A Thing: Tips for Bloggers Filing Taxes The Quirky Quad Targets Millennials
- 评论列表
-
- 添加评论