Backpacking Problem Variation via Greedy Approach: How Many Appl

  • 时间:2020-09-18 17:39:21
  • 分类:网络文摘
  • 阅读:116 次

You have some apples, where arr[i] is the weight of the i-th apple. You also have a basket that can carry up to 5000 units of weight. Return the maximum number of apples you can put in the basket.

Example 1:
Input: arr = [100,200,150,1000]
Output: 4
Explanation: All 4 apples can be carried by the basket since their sum of weights is 1450.

Example 2:
Input: arr = [900,950,800,1000,700,800]
Output: 5
Explanation: The sum of weights of the 6 apples exceeds 5000 so we choose any 5 of them.

Constraints:
1 <= arr.length <= 10^3
1 <= arr[i] <= 10^3

This is a simple variation of the back-packing problems. You are given the weight of each items, and you know the maximum capacity of the bag which is 5000 units. Then, you need to know the maximum items you can put.

Greedy Approach: by Sorting to Pick the Most Items

We can sort the items/apples by weights, in the ascending order. The time complexity via sorting is O(N.LogN). Then, we can follow the greedy strategy to pick the least weighted item at a time, until the total weights exceed the maximum.

The greedy approach works, because if you pick a heavier item, you can always pick a lighter one, which will not be a worse solution (you have more remaining capacity for extra items)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public:
    int maxNumberOfApples(vector<int>& arr) {
        sort(begin(arr), end(arr));
        int r = 0, curSum = 0;
        for (int i = 0; i < arr.size(); ++ i) {
            if (curSum + arr[i] <= 5000) {
                r ++;
                curSum += arr[i];
            } else {
                break;
            }
        }
        return r;
    }
};
class Solution {
public:
    int maxNumberOfApples(vector<int>& arr) {
        sort(begin(arr), end(arr));
        int r = 0, curSum = 0;
        for (int i = 0; i < arr.size(); ++ i) {
            if (curSum + arr[i] <= 5000) {
                r ++;
                curSum += arr[i];
            } else {
                break;
            }
        }
        return r;
    }
};

The above greedy solution runs at O(N.LogN) time overall. Another similar implementation in C++ saving up a variable.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public:
    int maxNumberOfApples(vector<int>& arr) {
        sort(begin(arr), end(arr));
        for (int i = 0, res = 0; i < arr.size(); ++ i) {
            if (res + arr[i] <= 5000) {
                res += arr[i];
            } else {
                return i;
            }
        }
        return arr.size();
    }
};
class Solution {
public:
    int maxNumberOfApples(vector<int>& arr) {
        sort(begin(arr), end(arr));
        for (int i = 0, res = 0; i < arr.size(); ++ i) {
            if (res + arr[i] <= 5000) {
                res += arr[i];
            } else {
                return i;
            }
        }
        return arr.size();
    }
};

You may also like the following relevant article: Algorithms Series: 0/1 BackPack – Dynamic Programming and BackTracking

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
果胶:天然的食品添加剂和保健品  保健食品鱼目混珠要验明正身再认购  教你鉴别几种化了妆的常见水果  枸杞并非壮阳药,专家提醒勿乱服用  大量生吃皮蛋,小心“烧”伤口腔  食品安全绕不开的食品添加剂问题  没有食品添加剂,我们的生活会怎样?  黑豆补气抗衰老 黑色食品有保健奇效  蜂蜜是冬天补养佳品 滋阴润燥的食物  冬季饮食10个注意 饮食搭配有原则 
评论列表
添加评论