Return the Path that Sum up to Target using DFS or BFS Algorithm
- 时间:2020-09-17 14:26:24
- 分类:网络文摘
- 阅读:98 次
Given a binary tree and a sum, find all root-to-leaf paths where each path’s sum equals the given sum. Note: A leaf is a node with no children.
Example:
Given the below binary tree and sum = 22,5 / \ 4 8 / / \ 11 13 4 / \ / \ 7 2 5 1Return:
1 2 3 4 [ [5,4,11,2], [5,8,4,5] ][ [5,4,11,2], [5,8,4,5] ]
This is yet another classic tree puzzle that can be solved via either Depth First Search (DFS) or Breadth First Search (BFS) algorithm.
Breadth First Search Algorithm of Finding Path Sum
The BFS searches the tree level-by-level, via the use of a queue. A node in the tree contains three information: the current node, the path till this point, and the remaining sum.
When the remaining sum is zero and the node is a leaf, then we push the path to the result array. While the queue still has nodes, we pop one from the queue and push its children if any to the end of the queue.
If you are using Javascript, please note that you may need to clone the path array.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | /** * Definition for a binary tree node. * function TreeNode(val) { * this.val = val; * this.left = this.right = null; * } */ /** * @param {TreeNode} root * @param {number} sum * @return {number[][]} */ var pathSum = function(root, sum) { var ans = []; if (!root) return []; var q = [[root, [], sum]]; while (q.length) { var p = q.shift(); var cur = p[0]; var path = p[1]; var sum = p[2]; sum -= cur.val; path.push(cur.val); if ((sum === 0) && (cur.left === null) && (cur.right === null)) { ans.push(path); } if (cur.left) q.push([cur.left, path.slice(), sum]); if (cur.right) q.push([cur.right, path.slice(), sum]); } return ans; }; |
/** * Definition for a binary tree node. * function TreeNode(val) { * this.val = val; * this.left = this.right = null; * } */ /** * @param {TreeNode} root * @param {number} sum * @return {number[][]} */ var pathSum = function(root, sum) { var ans = []; if (!root) return []; var q = [[root, [], sum]]; while (q.length) { var p = q.shift(); var cur = p[0]; var path = p[1]; var sum = p[2]; sum -= cur.val; path.push(cur.val); if ((sum === 0) && (cur.left === null) && (cur.right === null)) { ans.push(path); } if (cur.left) q.push([cur.left, path.slice(), sum]); if (cur.right) q.push([cur.right, path.slice(), sum]); } return ans; };
The following is a C++ implementation of the BFS algorithm where we use a std::tuple to store more than two information in a node. If there are two types of information, we can use std::pair instead.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<vector<int>> pathSum(TreeNode* root, int sum) { vector<vector<int>> r; if (!root) return r; queue<tuple<TreeNode*, vector<int>, int>> Q; Q.push({root, {}, sum}); while (!Q.empty()) { auto p = Q.front(); Q.pop(); TreeNode* cur = std::get<0>(p); vector<int> path = std::get<1>(p); int curSum = std::get<2>(p); curSum -= cur->val; path.push_back(cur->val); if (curSum == 0) { if ((cur->left == nullptr) && (cur->right == nullptr)) { r.push_back(path); } } if (cur->left != nullptr) Q.push({cur->left, path, curSum}); if (cur->right != nullptr) Q.push({cur->right, path, curSum}); } return r; } }; |
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<vector<int>> pathSum(TreeNode* root, int sum) { vector<vector<int>> r; if (!root) return r; queue<tuple<TreeNode*, vector<int>, int>> Q; Q.push({root, {}, sum}); while (!Q.empty()) { auto p = Q.front(); Q.pop(); TreeNode* cur = std::get<0>(p); vector<int> path = std::get<1>(p); int curSum = std::get<2>(p); curSum -= cur->val; path.push_back(cur->val); if (curSum == 0) { if ((cur->left == nullptr) && (cur->right == nullptr)) { r.push_back(path); } } if (cur->left != nullptr) Q.push({cur->left, path, curSum}); if (cur->right != nullptr) Q.push({cur->right, path, curSum}); } return r; } };
Depth First Search Algorithm of Finding Path Sum
The DFS often finds a path quicker than the BFS. And a DFS is often implemented as a recursion. See below local recursive function dfs in Javascript solution.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | /** * Definition for a binary tree node. * function TreeNode(val) { * this.val = val; * this.left = this.right = null; * } */ /** * @param {TreeNode} root * @param {number} sum * @return {number[][]} */ var pathSum = function(root, sum) { var ans = []; function dfs(root, arr, s) { if (!root) return; arr.push(root.val); s -= root.val; if ((s === 0) && (root.left === null) && (root.right === null)) { ans.push(arr); return; } if (root.left) dfs(root.left, arr.slice(), s); if (root.right) dfs(root.right, arr.slice(), s); } dfs(root, [], sum); return ans; }; |
/** * Definition for a binary tree node. * function TreeNode(val) { * this.val = val; * this.left = this.right = null; * } */ /** * @param {TreeNode} root * @param {number} sum * @return {number[][]} */ var pathSum = function(root, sum) { var ans = []; function dfs(root, arr, s) { if (!root) return; arr.push(root.val); s -= root.val; if ((s === 0) && (root.left === null) && (root.right === null)) { ans.push(arr); return; } if (root.left) dfs(root.left, arr.slice(), s); if (root.right) dfs(root.right, arr.slice(), s); } dfs(root, [], sum); return ans; };
Similarly, the C++ DFS implementation is done via recursion.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<vector<int>> pathSum(TreeNode* root, int sum) { vector<vector<int>> r; dfs(r, {}, root, sum); return r; } private: void dfs(vector<vector<int>> &r, vector<int> cur, TreeNode* root, int sum) { if (root == nullptr) return; sum -= root->val; cur.push_back(root->val); if ((sum == 0) && (root->left == nullptr) && (root->right == nullptr)) { r.push_back(cur); } else { dfs(r, cur, root->left, sum); dfs(r, cur, root->right, sum); } } }; |
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<vector<int>> pathSum(TreeNode* root, int sum) { vector<vector<int>> r; dfs(r, {}, root, sum); return r; } private: void dfs(vector<vector<int>> &r, vector<int> cur, TreeNode* root, int sum) { if (root == nullptr) return; sum -= root->val; cur.push_back(root->val); if ((sum == 0) && (root->left == nullptr) && (root->right == nullptr)) { r.push_back(cur); } else { dfs(r, cur, root->left, sum); dfs(r, cur, root->right, sum); } } };
All four implementations run at O(N) time and O(N) space, where N is the number of nodes in the tree.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:从上边剪下一块直径是80厘米的圆片 甲乙丙三个修路队共同修完一条公路 最多可做多少面小三角旗 客车从甲地开往乙地需要10小时 遇店加一半,遇花喝一斗 这些车共有86个轮子 wordpress使用短代码实现在父页面中显示子页面列表链接 使用 wordpress 插件 Backend Designer 自定义后台颜色风格 如何更改 WordPress 默认发件人及邮箱地址 免插件为wordpress配置SMTP服务
- 评论列表
-
- 添加评论