K Closest Points to Origin Algorithm by using Priority Queues in
- 时间:2020-10-11 16:01:36
- 分类:网络文摘
- 阅读:75 次
We have a list of points on the plane. Find the K closest points to the origin (0, 0). (Here, the distance between two points on a plane is the Euclidean distance.) You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)
Example 1:
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin. We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]]. Example 2: Input: points = [[3,3],[5,-1],[-2,4]], K = 2 Output: [[3,3],[-2,4]] (The answer [[-2,4],[3,3]] would also be accepted.)
Getting the K-nearest, K-shortest, K-smallest elements in an array is not difficult. You can sort the array at O(nlogn) complexity and thus return the first K elements in the sorted array. Alternatively, we can use priority queue to build a priority queue by inserting one element after another (N elements times logN complexity of rebuilding the priority queue after an element is pushed to the priority queue).
Once the priority queue is built, we then can pop out K elements in the queue, which is the answer.
K smallest elements using C++ Priority Queue
By default, the order of poping out elements from the queue (de-queue) will be from smallest to the biggest, we can write customize comparator, in C++, you can define a comparator to compare the distances to the origin (0, 0) using the following:
1 2 3 | auto cmp = [](vector<int> &a, vector<int> &b) { return a[0]*a[0]+a[1]*a[1] > b[0]*b[0]+b[1]*b[1]; }; |
auto cmp = [](vector<int> &a, vector<int> &b) { return a[0]*a[0]+a[1]*a[1] > b[0]*b[0]+b[1]*b[1]; };
It is worth mentioning that the comparator looks kinda opposite (the first parameter is bigger than the second parameter), which is different than Java.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | class Solution { public: vector<vector<int>> kClosest(vector<vector<int>>& points, int K) { auto cmp = [](vector<int> &a, vector<int> &b) { return a[0]*a[0]+a[1]*a[1] > b[0]*b[0]+b[1]*b[1]; }; priority_queue<vector<int>, vector<vector<int>>, decltype(cmp)> pq(cmp); for (int i = 0; i < points.size(); ++ i) { pq.push(points[i]); } vector<vector<int>> r; for (int i = 0; i < K; ++ i) { r.push_back(pq.top()); pq.pop(); } return r; } }; |
class Solution { public: vector<vector<int>> kClosest(vector<vector<int>>& points, int K) { auto cmp = [](vector<int> &a, vector<int> &b) { return a[0]*a[0]+a[1]*a[1] > b[0]*b[0]+b[1]*b[1]; }; priority_queue<vector<int>, vector<vector<int>>, decltype(cmp)> pq(cmp); for (int i = 0; i < points.size(); ++ i) { pq.push(points[i]); } vector<vector<int>> r; for (int i = 0; i < K; ++ i) { r.push_back(pq.top()); pq.pop(); } return r; } };
K smallest elements using Java Priority Queue
In Java, the customize comparator can be defined similarly – which is a bit verbose.
1 2 3 4 5 6 7 8 | Comparator<int[]> cmp = new Comparator<int[]>() { @Override public int compare(int[] a, int[] b) { int x = a[0]*a[0]+a[1]*a[1]; int y = b[0]*b[0]+b[1]*b[1]; return x < y ? -1 : ((x == y) ? 0 : 1); } }; |
Comparator<int[]> cmp = new Comparator<int[]>() { @Override public int compare(int[] a, int[] b) { int x = a[0]*a[0]+a[1]*a[1]; int y = b[0]*b[0]+b[1]*b[1]; return x < y ? -1 : ((x == y) ? 0 : 1); } };
We have to explicitly convert the boolean to integer, and the comparator defines that the first parameter is smaller than the second.
It might be possible to use the lambda expression to define the customize comparator for priority queue:
1 2 3 4 5 | Comparator<int[]> cmp = (a, b) -> { int x = a[0]*a[0]+a[1]*a[1]; int y = b[0]*b[0]+b[1]*b[1]; return x < y ? -1 : ((x == y) ? 0 : 1); }; |
Comparator<int[]> cmp = (a, b) -> { int x = a[0]*a[0]+a[1]*a[1]; int y = b[0]*b[0]+b[1]*b[1]; return x < y ? -1 : ((x == y) ? 0 : 1); };
The rest are the same, pushing all elements to build the priority queue, then de-queue the K elements – which give the K-smallest elements in the array, based on the customize comparator.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | class Solution { public int[][] kClosest(int[][] points, int K) { Comparator<int[]> cmp = new Comparator<int[]>() { @Override public int compare(int[] a, int[] b) { int x = a[0]*a[0]+a[1]*a[1]; int y = b[0]*b[0]+b[1]*b[1]; return x < y ? -1 : ((x == y) ? 0 : 1); } }; PriorityQueue<int[]> pq = new PriorityQueue<>(cmp); for (int i = 0; i < points.length; ++ i) { pq.add(points[i]); } int[][] r = new int[K][]; for (int i = 0; i < K; ++ i) { r[i] = pq.remove(); } return r; } } |
class Solution { public int[][] kClosest(int[][] points, int K) { Comparator<int[]> cmp = new Comparator<int[]>() { @Override public int compare(int[] a, int[] b) { int x = a[0]*a[0]+a[1]*a[1]; int y = b[0]*b[0]+b[1]*b[1]; return x < y ? -1 : ((x == y) ? 0 : 1); } }; PriorityQueue<int[]> pq = new PriorityQueue<>(cmp); for (int i = 0; i < points.length; ++ i) { pq.add(points[i]); } int[][] r = new int[K][]; for (int i = 0; i < K; ++ i) { r[i] = pq.remove(); } return r; } }
You can also use the custom sorting algorithm to find out the K closest point to the origin: K Closest Points to Origin using Custom Sorting Algorithm in C++/Java
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:How to Use Social Media and User-Generated Content to Boost Traf 7 Types of Blog Posts and When to Use Them How to Maximize Profit From Your Blog Visitors Win a Premium WordPress Theme For Your Blog Easy Tips for Bloggers to Make Insta-Dough on Instagram “Celebrating” World Backup Day 2016 How the Right Visual Can Transform Any Landing Page Lessons From Star Wars: How The Force Awakens Impacted the Inter 3 Tips Guaranteed to Get You More Readers How to Build Instant Forms with CaptainForm for WordPress
- 评论列表
-
- 添加评论