Algorithms to Locate the Leftmost Column with at Least a One in

  • 时间:2020-10-11 15:25:20
  • 分类:网络文摘
  • 阅读:83 次

A binary matrix means that all elements are 0 or 1. For each individual row of the matrix, this row is sorted in non-decreasing order. Given a row-sorted binary matrix binaryMatrix, return leftmost column index(0-indexed) with at least a 1 in it. If such index doesn’t exist, return -1.

You can’t access the Binary Matrix directly. You may only access the matrix using a BinaryMatrix interface:

  • BinaryMatrix.get(row, col) returns the element of the matrix at index (row, col) (0-indexed).
  • BinaryMatrix.dimensions() returns a list of 2 elements [rows, cols], which means the matrix is rows * cols.

For custom testing purposes you’re given the binary matrix mat as input in the following four examples. You will not have access the binary matrix directly.

Example 1:
Input: mat = [[0,0],[1,1]]
Output: 0
binary-matrix-01 Algorithms to Locate the Leftmost Column with at Least a One in a Binary Matrix algorithms binary search c / c++

Example 2:
Input: mat = [[0,0],[0,1]]
Output: 1
binary-matrix-02 Algorithms to Locate the Leftmost Column with at Least a One in a Binary Matrix algorithms binary search c / c++

Example 3:
Input: mat = [[0,0],[0,0]]
Output: -1
binary-matrix-03 Algorithms to Locate the Leftmost Column with at Least a One in a Binary Matrix algorithms binary search c / c++

Example 4:
Input: mat = [[0,0,0,1],[0,0,1,1],[0,1,1,1]]
Output: 1
binary-matrix-04 Algorithms to Locate the Leftmost Column with at Least a One in a Binary Matrix algorithms binary search c / c++

Constraints:
rows == mat.length
cols == mat[i].length
1 <= rows, cols <= 100
mat[i][j] is either 0 or 1.
mat[i] is sorted in a non-decreasing way.

Hints:

  • (Binary Search) For each row do a binary search to find the leftmost one on that row and update the answer.
  • (Optimal Approach) Imagine there is a pointer p(x, y) starting from top right corner. p can only move left or down. If the value at p is 0, move down. If the value at p is 1, move left. Try to figure out the correctness and time complexity of this algorithm.

Bruteforce Algorithm to Locate the Left-most 1-column in a Binary Matrix

We can iterate over the matrix in O(MN) time and record the smallest column when we have a one in the binary matrix. The algorithm does not utilise the fact that the binary matrix is sorted in both columns and rows.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * class BinaryMatrix {
 *   public:
 *     int get(int x, int y);
 *     vector<int> dimensions();
 * };
 */
 
class Solution {
public:
    int leftMostColumnWithOne(BinaryMatrix &binaryMatrix) {
        vector<int> dim = binaryMatrix.dimensions();
        int row = dim[0];
        int col = dim[1];
        int res = INT_MAX;
        for (int i = 0; i < row; ++ i) {
            for (int j = 0; j < col; ++ j) {
                if (binaryMatrix.get(i, j) == 1) {
                    res = min(res, j);
                }
            }
        }   
        return res == INT_MAX ? -1 : res;
    }
};
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * class BinaryMatrix {
 *   public:
 *     int get(int x, int y);
 *     vector<int> dimensions();
 * };
 */

class Solution {
public:
    int leftMostColumnWithOne(BinaryMatrix &binaryMatrix) {
        vector<int> dim = binaryMatrix.dimensions();
        int row = dim[0];
        int col = dim[1];
        int res = INT_MAX;
        for (int i = 0; i < row; ++ i) {
            for (int j = 0; j < col; ++ j) {
                if (binaryMatrix.get(i, j) == 1) {
                    res = min(res, j);
                }
            }
        }   
        return res == INT_MAX ? -1 : res;
    }
};

Locate the Left-most Column using Binary Search Algorithm

A better approach is to iterate over the rows, and binary search the left-most 1 since the rows are sorted. The time complexity is O(MLogN) where M is the number of the rows, and N is the number of the columns of the matrix.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * class BinaryMatrix {
 *   public:
 *     int get(int x, int y);
 *     vector<int> dimensions();
 * };
 */
 
class Solution {
public:
    int leftMostColumnWithOne(BinaryMatrix &binaryMatrix) {
        vector<int> dim = binaryMatrix.dimensions();
        int row = dim[0];
        int col = dim[1];
        int res = INT_MAX;        
        for (int r = 0; r < row; ++ r) {
            int a = 0, b = col - 1;
            while (a <= b) {
                int mid = a + (b - a) / 2;
                if (binaryMatrix.get(r, mid) == 1) {
                    b = mid - 1;
                    res = min(res, mid);
                } else {
                    a = mid + 1;
                }
            }
        }
        return res == INT_MAX ? -1 : res;
    }
};
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * class BinaryMatrix {
 *   public:
 *     int get(int x, int y);
 *     vector<int> dimensions();
 * };
 */

class Solution {
public:
    int leftMostColumnWithOne(BinaryMatrix &binaryMatrix) {
        vector<int> dim = binaryMatrix.dimensions();
        int row = dim[0];
        int col = dim[1];
        int res = INT_MAX;        
        for (int r = 0; r < row; ++ r) {
            int a = 0, b = col - 1;
            while (a <= b) {
                int mid = a + (b - a) / 2;
                if (binaryMatrix.get(r, mid) == 1) {
                    b = mid - 1;
                    res = min(res, mid);
                } else {
                    a = mid + 1;
                }
            }
        }
        return res == INT_MAX ? -1 : res;
    }
};

When we find a One, we immediately update the smallest column and search in the lower half.

Optimal Solution by Moving the Coodinate to Lower Left

If we start from the top right corner, move left if it is 1, otherwise move down. When the position is out of the dimensions, we know the smallest column is one to the right.

The complexity is O(M + N).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * class BinaryMatrix {
 *   public:
 *     int get(int x, int y);
 *     vector<int> dimensions();
 * };
 */
 
class Solution {
public:
    int leftMostColumnWithOne(BinaryMatrix &binaryMatrix) {
        vector<int> dim = binaryMatrix.dimensions();
        int row = dim[0];
        int col = dim[1];
        int r = 0;
        int c = col - 1;
        while ((r < row) && (c >= 0)) {
            if (binaryMatrix.get(r, c) == 0) {
                r ++;
            } else {
                c --;
            }
        }
        return c + 1 == col ? -1 : c + 1;
    }
};
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * class BinaryMatrix {
 *   public:
 *     int get(int x, int y);
 *     vector<int> dimensions();
 * };
 */

class Solution {
public:
    int leftMostColumnWithOne(BinaryMatrix &binaryMatrix) {
        vector<int> dim = binaryMatrix.dimensions();
        int row = dim[0];
        int col = dim[1];
        int r = 0;
        int c = col - 1;
        while ((r < row) && (c >= 0)) {
            if (binaryMatrix.get(r, c) == 0) {
                r ++;
            } else {
                c --;
            }
        }
        return c + 1 == col ? -1 : c + 1;
    }
};

If current value is 1, we know the answer is at most current column, thus we move left. It is zero, we try current column to see if it has 1. The lower-right half of the matrix may contain ones.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
写人作文严厉的妈妈作文200字  读《大自然的启示》有感600字  利用三十而已热门关键词公众号截流变现实操  困境下的SEO,站长如何自渡?  建设一个网站的费用由哪些组成?  国内主机商开始取消个人网站备案码  网站SEO优化,哪些页面不需要Google建立索引  如何利用Google Keywords Planner 做SEO的关键词调研?  杨泽业:复利是世界第八大奇迹,网站是财富倍增的神兵利器  企业网站建设关于域名的选择纯干货 
评论列表
添加评论