Algorithm to Compute the Largest Triple Products from Array

  • 时间:2020-10-07 14:34:56
  • 分类:网络文摘
  • 阅读:96 次

You’re given a list of n integers arr[0..(n-1)]. You must compute a list output[0..(n-1)] such that, for each index i (between 0 and n-1, inclusive), output[i] is equal to the product of the three largest elements out of arr[0..i] (or equal to -1 if i < 2, as arr[0..i] then includes fewer than three elements). Note that the three largest elements used to form any product may have the same values as one another, but they must be at different indices in arr.

1
int[] findMaxProduct(int[] arr)
int[] findMaxProduct(int[] arr)

Input
n is in the range [1, 100,000].
Each value arr[i] is in the range [1, 1,000].

Output
Return a list of n integers output[0..(n-1)], as described above.

Example 1
n = 5
arr = [1, 2, 3, 4, 5]
output = [-1, -1, 6, 24, 60]
The 3rd element of output is 3*2*1 = 6, the 4th is 4*3*2 = 24, and the 5th is 5*4*3 = 60.

Example 2
n = 5
arr = [2, 1, 2, 1, 2]
output = [-1, -1, 4, 4, 8]
The 3rd element of output is 2*2*1 = 4, the 4th is 2*2*1 = 4, and the 5th is 2*2*2 = 8.

Largest Triple Products by Sorting 3 Elements

We can keep an array of maximum 3 numbers. For each iteration, we push the current number and sort the array, then pop the smallest number.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
vector<int> findMaxProduct(const vector<int> &arr) {
  vector<int> ans(arr.size(), -1);
  vector<int> max3 = {arr[0], arr[1]};
  for (int i = 2; i < arr.size(); ++ i) {
    max3.push_back(arr[i]);
    if (max3.size() > 3) {
      sort(begin(max3), end(max3), [](auto &a, auto &b) {
        return b < a;
      });
      max3.pop_back();
    }
    ans[i] = max3[0] * max3[1] * max3[2];
  }
  return ans;
}
vector<int> findMaxProduct(const vector<int> &arr) {
  vector<int> ans(arr.size(), -1);
  vector<int> max3 = {arr[0], arr[1]};
  for (int i = 2; i < arr.size(); ++ i) {
    max3.push_back(arr[i]);
    if (max3.size() > 3) {
      sort(begin(max3), end(max3), [](auto &a, auto &b) {
        return b < a;
      });
      max3.pop_back();
    }
    ans[i] = max3[0] * max3[1] * max3[2];
  }
  return ans;
}

The time complexity is O(N) although we are using sort process in the loop – but the complexity for sorting the 4 numbers is constant.

We can remove the condition check in the loop – the first triple products can be computed directly without sorting:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
vector<int> findMaxProduct(const vector<int> &arr) {
  vector<int> ans(arr.size(), -1);
  vector<int> max3 = {arr[0], arr[1], arr[2]};
  ans[2] = arr[0] * arr[1] * arr[2];
  for (int i = 3; i < arr.size(); ++ i) {
    max3.push_back(arr[i]);
    sort(begin(max3), end(max3), [](auto &a, auto &b) {
      return b < a;
    });
    max3.pop_back();
    ans[i] = max3[0] * max3[1] * max3[2];
  }
  return ans;
}
vector<int> findMaxProduct(const vector<int> &arr) {
  vector<int> ans(arr.size(), -1);
  vector<int> max3 = {arr[0], arr[1], arr[2]};
  ans[2] = arr[0] * arr[1] * arr[2];
  for (int i = 3; i < arr.size(); ++ i) {
    max3.push_back(arr[i]);
    sort(begin(max3), end(max3), [](auto &a, auto &b) {
      return b < a;
    });
    max3.pop_back();
    ans[i] = max3[0] * max3[1] * max3[2];
  }
  return ans;
}

This algorithm is correct because the large elements stay once they come in (they are not discarded) – therefore we just need to keep the maximum 3 numbers at any time.

You can also use Priority queue to pop 3 numbers.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
东南卫视直播-东南卫视在线直播观看「高清」  陕西卫视直播-陕西卫视在线直播观看「高清」  农林卫视直播-陕西农林卫视在线直播观看「高清」  贵州卫视直播-贵州卫视在线直播观看「高清」  云南卫视直播-云南卫视在线直播观看「高清」  江西卫视直播-江西卫视在线直播观看「高清」  甘肃卫视直播-甘肃卫视在线直播观看「高清」  宁夏卫视直播-宁夏卫视在线直播观看「高清」  海南卫视直播-海南卫视在线直播观看「高清」  青海卫视直播-青海卫视在线直播观看「高清」 
评论列表
添加评论