How to Check if a Matrix is a Toeplitz Matrix?

  • 时间:2020-10-05 13:36:40
  • 分类:网络文摘
  • 阅读:121 次

A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element.

Now given an M x N matrix, return True if and only if the matrix is Toeplitz.

Example 1
Input:
matrix = [
[1,2,3,4],
[5,1,2,3],
[9,5,1,2]
]
Output: True
Explanation:
In the above grid, the diagonals are:
“[9]”, “[5, 5]”, “[1, 1, 1]”, “[2, 2, 2]”, “[3, 3]”, “[4]”.
In each diagonal all elements are the same, so the answer is True.

Example 2:

Input:
matrix = [
[1,2],
[2,2]
]
Output: False
Explanation:
The diagonal “[1, 2]” has different elements.

Note:

matrix will be a 2D array of integers.
matrix will have a number of rows and columns in range [1, 20].
matrix[i][j] will be integers in range [0, 99].

Follow up:

What if the matrix is stored on disk, and the memory is limited such that you can only load at most one row of the matrix into the memory at once?
What if the matrix is so large that you can only load up a partial row into the memory at once?

Compare with Bottom-Right Neighbour

We can iterate the matrix elements by O(MN) time complexity where M and N are the number of rows and columns of the matrix. At each element, we check its bottom-right neighbour (if it is not the last row or last column), if we find unmatched, the matrix is not a Toeplitz matrix.

1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution {
public:
    bool isToeplitzMatrix(vector<vector<int>&got;& matrix) {
        for (int row = 0; row < matrix.size() - 1; row ++) {
            for (int col = 0; col < matrix[row].size() - 1; col ++) {
                if (matrix[row][col] != matrix[row + 1][col + 1]) {
                    return false;
                }
            }
        }
        return true;
    }   
};
class Solution {
public:
    bool isToeplitzMatrix(vector<vector<int>&got;& matrix) {
        for (int row = 0; row < matrix.size() - 1; row ++) {
            for (int col = 0; col < matrix[row].size() - 1; col ++) {
                if (matrix[row][col] != matrix[row + 1][col + 1]) {
                    return false;
                }
            }
        }
        return true;
    }   
};

Group by Category using Hash table

The above solution takes O(1) constant space complexity however, it requires accessing two rows of matrix at the same time to perform the checks. If the matrix is large and memory is limited that you can access one row at a time, we need to do this a bit differently.

What features make elements on a same diagonal? It turns out the row-column is the same for all elements on the same diagonals. Then we can use a hash table with key set to the group i.e. row-column and value set to the matrix element. As we go through the entire matrix, we update the entry on the first element of a diagonal, if it appears before, and the value isn’t the same as current element, it is simply not a Toeplitz matrix.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
    bool isToeplitzMatrix(vector<vector<int>>& matrix) {
        unordered_map<int, int> group;
        for (int row = 0; row < matrix.size(); row ++) {
            for (int col = 0; col < matrix[row].size(); col ++) {
                if (group.find(row - col) == group.end()) {
                    group[row - col] = matrix[row][col];
                } else {
                    if (group[row - col] != matrix[row][col]) {
                        return false;
                    }
                }
            }
        }
        return true;
    }   
};
class Solution {
public:
    bool isToeplitzMatrix(vector<vector<int>>& matrix) {
        unordered_map<int, int> group;
        for (int row = 0; row < matrix.size(); row ++) {
            for (int col = 0; col < matrix[row].size(); col ++) {
                if (group.find(row - col) == group.end()) {
                    group[row - col] = matrix[row][col];
                } else {
                    if (group[row - col] != matrix[row][col]) {
                        return false;
                    }
                }
            }
        }
        return true;
    }   
};

Time complexity is O(MN) and the space complexity is O(M+N) e.g. a hash table (unordered_map in C++). This approach requires reading one row of the matrix at a time.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
先别想着做什么网站赚钱了 先做好网站建设吧  个人网站站长应了解的基础知识  作为个人站长,何不入驻今日头条  对个人站长的一些思考  一位个人站长的自白  2020疫情将过 个人站长能否有机会赚钱  这次疫情下对个人站长是机会吗?  站长赚钱需要做什么准备工作?  个人站长做个网站赚钱真是越来越难了  网站站长赚钱的七条经验分享 
评论列表
添加评论