The Image Smoother Algorithm in C++/Java

  • 时间:2020-10-05 13:15:44
  • 分类:网络文摘
  • 阅读:111 次

Given a 2D integer matrix M representing the gray scale of an image, you need to design a smoother to make the gray scale of each cell becomes the average gray scale (rounding down) of all the 8 surrounding cells and itself. If a cell has less than 8 surrounding cells, then use as many as you can.

Example 1:
Input:
[[1,1,1],
[1,0,1],
[1,1,1]]

Output:
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]

Explanation:
For the point (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the point (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0

Note:
The value in the given matrix is in the range of [0, 255].
The length and width of the given matrix are in the range of [1, 150].

How to Smooth Image in C++?

The following C++ code implements O(N) algorithm (where N is the number of pixels in the image) that iterates each pixel. We can’t modify the existing image, rather, it has to be done on a separate copy of image.

We can deep copy the std::vector, or just assign new pixel to it.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public:
    vector<vector<int>> imageSmoother(vector<vector<int>>& M) {
        int row = M.size();
        if (row == 0) return M;
        int width = M[0].size();
        if (width == 0) return M;
        vector<vector<int>> N(row, vector<int>(width)); // or N = M deep copy of vector
        for (int i = 0; i < row; ++ i) {
            for (int j = 0; j < width; ++ j) {
                int sum = 0, c = 0;
                for (int k = max(0, i - 1); k <= min(i + 1, row - 1); k ++) {
                    for (int u = max(0, j - 1); u <= min(j + 1, width - 1); u ++) {
                        sum += M[k][u];
                        c ++;
                    }
                }
                N[i][j] = sum / c;
            }
        }
        return N;
    }
};
class Solution {
public:
    vector<vector<int>> imageSmoother(vector<vector<int>>& M) {
        int row = M.size();
        if (row == 0) return M;
        int width = M[0].size();
        if (width == 0) return M;
        vector<vector<int>> N(row, vector<int>(width)); // or N = M deep copy of vector
        for (int i = 0; i < row; ++ i) {
            for (int j = 0; j < width; ++ j) {
                int sum = 0, c = 0;
                for (int k = max(0, i - 1); k <= min(i + 1, row - 1); k ++) {
                    for (int u = max(0, j - 1); u <= min(j + 1, width - 1); u ++) {
                        sum += M[k][u];
                        c ++;
                    }
                }
                N[i][j] = sum / c;
            }
        }
        return N;
    }
};

We can check if the neighbour index of pixels are valid. Alternatively, we can use min/max to make sure the indices are always valid. We don’t need to use floor function as the integer division is floor anyway.

How to Smooth Image in Java?

The same image smooth algorithm can be implemented in Java as follows.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
    public int[][] imageSmoother(int[][] M) {
        int row = M.length;
        if (row == 0) return M;
        int width = M[0].length;
        if (width == 0) return M;
        int[][] N = new int[row][width];
        for (int i = 0; i < row; ++ i) {
            for (int j = 0; j < width; ++ j) {
                int sum = 0, c = 0;
                for (int k = Math.max(0, i - 1); k <= Math.min(i + 1, row - 1); k ++) {
                    for (int u = Math.max(0, j - 1); u <= Math.min(j + 1, width - 1); u ++) {
                        sum += M[k][u];
                        c ++;
                    }
                }
                N[i][j] = sum / c;
            }
        }
        return N;        
    }
}
class Solution {
    public int[][] imageSmoother(int[][] M) {
        int row = M.length;
        if (row == 0) return M;
        int width = M[0].length;
        if (width == 0) return M;
        int[][] N = new int[row][width];
        for (int i = 0; i < row; ++ i) {
            for (int j = 0; j < width; ++ j) {
                int sum = 0, c = 0;
                for (int k = Math.max(0, i - 1); k <= Math.min(i + 1, row - 1); k ++) {
                    for (int u = Math.max(0, j - 1); u <= Math.min(j + 1, width - 1); u ++) {
                        sum += M[k][u];
                        c ++;
                    }
                }
                N[i][j] = sum / c;
            }
        }
        return N;        
    }
}

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
3 Chrome Blogging Extensions to Watch Out for 2015  Cloud-Based Tools to Stake Your Business Blog On  How To Protect Your Brand On Social Media  Ways to Find Out if a Ghost Blogger is Right for You  Why You SHOULDN’T Use WordPress as Your Blogging Platform  How to Maximize Your Freelance Profits Using the Power of Emotio  What to Expect from Hiring Outsourced Content Writers  Call for Minimalism: How the New Wave of Blogging Platforms Give  3 Easy Ways to Improve Writing Skills  Explaining The Perfect Website Design to Non-Designers 
评论列表
添加评论