The Image Smoother Algorithm in C++/Java
- 时间:2020-10-05 13:15:44
- 分类:网络文摘
- 阅读:77 次
Given a 2D integer matrix M representing the gray scale of an image, you need to design a smoother to make the gray scale of each cell becomes the average gray scale (rounding down) of all the 8 surrounding cells and itself. If a cell has less than 8 surrounding cells, then use as many as you can.
Example 1:
Input:
[[1,1,1],
[1,0,1],
[1,1,1]]Output:
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]Explanation:
For the point (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the point (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0Note:
The value in the given matrix is in the range of [0, 255].
The length and width of the given matrix are in the range of [1, 150].
How to Smooth Image in C++?
The following C++ code implements O(N) algorithm (where N is the number of pixels in the image) that iterates each pixel. We can’t modify the existing image, rather, it has to be done on a separate copy of image.
We can deep copy the std::vector, or just assign new pixel to it.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | class Solution { public: vector<vector<int>> imageSmoother(vector<vector<int>>& M) { int row = M.size(); if (row == 0) return M; int width = M[0].size(); if (width == 0) return M; vector<vector<int>> N(row, vector<int>(width)); // or N = M deep copy of vector for (int i = 0; i < row; ++ i) { for (int j = 0; j < width; ++ j) { int sum = 0, c = 0; for (int k = max(0, i - 1); k <= min(i + 1, row - 1); k ++) { for (int u = max(0, j - 1); u <= min(j + 1, width - 1); u ++) { sum += M[k][u]; c ++; } } N[i][j] = sum / c; } } return N; } }; |
class Solution { public: vector<vector<int>> imageSmoother(vector<vector<int>>& M) { int row = M.size(); if (row == 0) return M; int width = M[0].size(); if (width == 0) return M; vector<vector<int>> N(row, vector<int>(width)); // or N = M deep copy of vector for (int i = 0; i < row; ++ i) { for (int j = 0; j < width; ++ j) { int sum = 0, c = 0; for (int k = max(0, i - 1); k <= min(i + 1, row - 1); k ++) { for (int u = max(0, j - 1); u <= min(j + 1, width - 1); u ++) { sum += M[k][u]; c ++; } } N[i][j] = sum / c; } } return N; } };
We can check if the neighbour index of pixels are valid. Alternatively, we can use min/max to make sure the indices are always valid. We don’t need to use floor function as the integer division is floor anyway.
How to Smooth Image in Java?
The same image smooth algorithm can be implemented in Java as follows.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | class Solution { public int[][] imageSmoother(int[][] M) { int row = M.length; if (row == 0) return M; int width = M[0].length; if (width == 0) return M; int[][] N = new int[row][width]; for (int i = 0; i < row; ++ i) { for (int j = 0; j < width; ++ j) { int sum = 0, c = 0; for (int k = Math.max(0, i - 1); k <= Math.min(i + 1, row - 1); k ++) { for (int u = Math.max(0, j - 1); u <= Math.min(j + 1, width - 1); u ++) { sum += M[k][u]; c ++; } } N[i][j] = sum / c; } } return N; } } |
class Solution { public int[][] imageSmoother(int[][] M) { int row = M.length; if (row == 0) return M; int width = M[0].length; if (width == 0) return M; int[][] N = new int[row][width]; for (int i = 0; i < row; ++ i) { for (int j = 0; j < width; ++ j) { int sum = 0, c = 0; for (int k = Math.max(0, i - 1); k <= Math.min(i + 1, row - 1); k ++) { for (int u = Math.max(0, j - 1); u <= Math.min(j + 1, width - 1); u ++) { sum += M[k][u]; c ++; } } N[i][j] = sum / c; } } return N; } }
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:三款肉制食品诱惑红超标北京已下架 保健食品虚假广告花样百出太坑人 冰淇淋为何要加如此多的食品添加剂 肉禽类的这些部位千万不要去吃 百事可乐配方含致癌色素仍坚称安全 调查称槟榔是一级致癌物可引发口腔癌 嚼食槟榔对身体健康的危害非常大 槟榔被认定为一级致癌物可引发口腔癌 食品安全监管工作的有效性令人疑惑 厂家称没法根本解决五芳斋粽子发霉
- 评论列表
-
- 添加评论