Counting the Prime Arrangements
- 时间:2020-09-19 10:45:07
- 分类:网络文摘
- 阅读:132 次
Return the number of permutations of 1 to n so that prime numbers are at prime indices (1-indexed.) (Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.) Since the answer may be large, return the answer modulo 10^9 + 7.
Example 1:
Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.Example 2:
Input: n = 100
Output: 682289015Constraints:
1 <= n <= 100Hints:
Solve the problem for prime numbers and composite numbers separately.
Multiply the number of permutations of prime numbers over prime indices with the number of permutations of composite numbers over composite indices.
The number of permutations equals the factorial.
Counting Prime Numbers and Composite Numbers
The number of permutations will be equal to the product of the permutation from all prime numbers and the number of composite numbers. And the total permutations for n-numbers can be computed via factorial which is n!
We can use Sieve Prime Algorithms to generate the prime numbers less than 100 (given constraints) quickly – and use a boolean array to indicate if a number is prime or not.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | class Solution { public: int numPrimeArrangements(int n) { countPrimes(); int numOfPrimes = 0; for (int i = 1; i <= n; ++ i) { if (primes[i]) { numOfPrimes ++; } } return ((int64_t)(fact(numOfPrimes) % MOD) * (fact(n - numOfPrimes) % MOD)) % MOD; } private: const int MOD = (int)(1e9 + 7); static const int MAXN = 101; bool primes[MAXN]; void countPrimes() { // using Sieve Prime Algorithms std::fill(begin(primes), end(primes), true); primes[0] = false; primes[1] = false; int i = 2; while (i < MAXN) { int j = i; while (j + i < MAXN) { j += i; primes[j] = false; } i ++; while ((i < MAXN) && (!primes[i])) i ++; } } int fact(int n) { int64_t r = 1; for (int i = 2; i <= n; ++ i) { r = ((r % MOD) * (i % MOD)) % MOD; } return (int)r; } }; |
class Solution {
public:
int numPrimeArrangements(int n) {
countPrimes();
int numOfPrimes = 0;
for (int i = 1; i <= n; ++ i) {
if (primes[i]) {
numOfPrimes ++;
}
}
return ((int64_t)(fact(numOfPrimes) % MOD) *
(fact(n - numOfPrimes) % MOD)) % MOD;
}
private:
const int MOD = (int)(1e9 + 7);
static const int MAXN = 101;
bool primes[MAXN];
void countPrimes() { // using Sieve Prime Algorithms
std::fill(begin(primes), end(primes), true);
primes[0] = false;
primes[1] = false;
int i = 2;
while (i < MAXN) {
int j = i;
while (j + i < MAXN) {
j += i;
primes[j] = false;
}
i ++;
while ((i < MAXN) && (!primes[i])) i ++;
}
}
int fact(int n) {
int64_t r = 1;
for (int i = 2; i <= n; ++ i) {
r = ((r % MOD) * (i % MOD)) % MOD;
}
return (int)r;
}
};Alternatively, we can test each number on the fly – O(Sqrt(N)) complexity – but O(1) particularly in this problem given the constraint of maximum input is 100.
1 2 3 4 5 6 7 8 9 | bool checkPrime(int n) { // O(Sqrt(N)) if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0) return false; for (int i = 3; i * i <= n; i += 2) { if (n % i == 0) return false; } return true; } |
bool checkPrime(int n) { // O(Sqrt(N))
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0) return false;
for (int i = 3; i * i <= n; i += 2) {
if (n % i == 0) return false;
}
return true;
}–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:广东卫视直播-广东卫视在线直播观看「高清」 深圳卫视直播-深圳卫视在线直播观看「高清」 四川卫视直播-四川卫视在线直播观看「高清」 厦门卫视直播-厦门卫视在线直播观看「高清」 广西卫视直播-广西卫视在线直播观看「高清」 东南卫视直播-东南卫视在线直播观看「高清」 陕西卫视直播-陕西卫视在线直播观看「高清」 农林卫视直播-陕西农林卫视在线直播观看「高清」 贵州卫视直播-贵州卫视在线直播观看「高清」 云南卫视直播-云南卫视在线直播观看「高清」
- 评论列表
-
- 添加评论