Counting the Prime Arrangements

  • 时间:2020-09-19 10:45:07
  • 分类:网络文摘
  • 阅读:96 次

Return the number of permutations of 1 to n so that prime numbers are at prime indices (1-indexed.) (Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.) Since the answer may be large, return the answer modulo 10^9 + 7.

Example 1:
Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.

Example 2:
Input: n = 100
Output: 682289015

Constraints:
1 <= n <= 100

Hints:
Solve the problem for prime numbers and composite numbers separately.
Multiply the number of permutations of prime numbers over prime indices with the number of permutations of composite numbers over composite indices.
The number of permutations equals the factorial.

Counting Prime Numbers and Composite Numbers

The number of permutations will be equal to the product of the permutation from all prime numbers and the number of composite numbers. And the total permutations for n-numbers can be computed via factorial which is n!

We can use Sieve Prime Algorithms to generate the prime numbers less than 100 (given constraints) quickly – and use a boolean array to indicate if a number is prime or not.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class Solution {
public:
    int numPrimeArrangements(int n) {
        countPrimes();
        int numOfPrimes = 0;
        for (int i = 1; i <= n; ++ i) {
            if (primes[i]) {
                numOfPrimes ++;
            }
        }
        return ((int64_t)(fact(numOfPrimes) % MOD) * 
                (fact(n - numOfPrimes) % MOD)) % MOD;
    }
private:
    const int MOD = (int)(1e9 + 7);
    static const int MAXN = 101;
    bool primes[MAXN];
    
    void countPrimes() { // using Sieve Prime Algorithms
        std::fill(begin(primes), end(primes), true);
        primes[0] = false;
        primes[1] = false;        
        int i = 2;
        while (i < MAXN) {            
            int j = i;
            while (j + i < MAXN) {
                j += i;
                primes[j] = false;
            }
            i ++;
            while ((i < MAXN) && (!primes[i])) i ++;            
        }
    }
    
    int fact(int n) {
        int64_t r = 1;
        for (int i = 2; i <= n; ++ i) {
            r = ((r % MOD) * (i % MOD)) % MOD;
        }
        return (int)r;
    }
};
class Solution {
public:
    int numPrimeArrangements(int n) {
        countPrimes();
        int numOfPrimes = 0;
        for (int i = 1; i <= n; ++ i) {
            if (primes[i]) {
                numOfPrimes ++;
            }
        }
        return ((int64_t)(fact(numOfPrimes) % MOD) * 
                (fact(n - numOfPrimes) % MOD)) % MOD;
    }
private:
    const int MOD = (int)(1e9 + 7);
    static const int MAXN = 101;
    bool primes[MAXN];
    
    void countPrimes() { // using Sieve Prime Algorithms
        std::fill(begin(primes), end(primes), true);
        primes[0] = false;
        primes[1] = false;        
        int i = 2;
        while (i < MAXN) {            
            int j = i;
            while (j + i < MAXN) {
                j += i;
                primes[j] = false;
            }
            i ++;
            while ((i < MAXN) && (!primes[i])) i ++;            
        }
    }
    
    int fact(int n) {
        int64_t r = 1;
        for (int i = 2; i <= n; ++ i) {
            r = ((r % MOD) * (i % MOD)) % MOD;
        }
        return (int)r;
    }
};

Alternatively, we can test each number on the fly – O(Sqrt(N)) complexity – but O(1) particularly in this problem given the constraint of maximum input is 100.

1
2
3
4
5
6
7
8
9
bool checkPrime(int n) { // O(Sqrt(N))
    if (n <= 1) return false;
    if (n <= 3) return true;
    if (n % 2 == 0) return false;
    for (int i = 3; i * i <= n; i += 2) {
        if (n % i == 0) return false;
    }
    return true;
}
bool checkPrime(int n) { // O(Sqrt(N))
    if (n <= 1) return false;
    if (n <= 3) return true;
    if (n % 2 == 0) return false;
    for (int i = 3; i * i <= n; i += 2) {
        if (n % i == 0) return false;
    }
    return true;
}

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
The Brace Expansion Algorithms using Breadth First Search or Dep  Coding Exercise: Sum of Digits in the Minimum Number  Javascript Coding Exercise: The QuickSort Implementation in Java  In-place Run-Length String Compressions using C++  Algorithms to Compute the Factor Combinations for An Integer usi  How and Why You Should Use Infographics On Your Blog  How to Make Your “Contact Us” Page Kick Ass  The A to Z of Content Marketing: Habits Every Content Marketer S  Keeping the Flame Going: How to Rock a Steady Job and Still Have  How to Use Social Media and User-Generated Content to Boost Traf 
评论列表
添加评论