Find the Queens That Can Attack the King

  • 时间:2020-09-17 14:26:24
  • 分类:网络文摘
  • 阅读:104 次

On an 8×8 chessboard, there can be multiple Black Queens and one White King.

Given an array of integer coordinates queens that represents the positions of the Black Queens, and a pair of coordinates king that represent the position of the White King, return the coordinates of all the queens (in any order) that can attack the King.

queens-attack-king-on-chess-board1 Find the Queens That Can Attack the King algorithms c / c++
Input: queens = [[0,1],[1,0],[4,0],[0,4],[3,3],[2,4]], king = [0,0]
Output: [[0,1],[1,0],[3,3]]
Explanation:
The queen at [0,1] can attack the king cause they’re in the same row.
The queen at [1,0] can attack the king cause they’re in the same column.
The queen at [3,3] can attack the king cause they’re in the same diagnal.
The queen at [0,4] can’t attack the king cause it’s blocked by the queen at [0,1].
The queen at [4,0] can’t attack the king cause it’s blocked by the queen at [1,0].
The queen at [2,4] can’t attack the king cause it’s not in the same row/column/diagnal as the king.

queens-attack-king-on-chess-board2 Find the Queens That Can Attack the King algorithms c / c++
Input: queens = [[0,0],[1,1],[2,2],[3,4],[3,5],[4,4],[4,5]], king = [3,3]
Output: [[2,2],[3,4],[4,4]]

queens-attack-king-on-chess-board3 Find the Queens That Can Attack the King algorithms c / c++
Input: queens = [[5,6],[7,7],[2,1],[0,7],[1,6],[5,1],[3,7],[0,3],[4,0],[1,2],[6,3],[5,0],[0,4],[2,2],[1,1],[6,4],[5,4],[0,0],[2,6],[4,5],[5,2],[1,4],[7,5],[2,3],[0,5],[4,2],[1,0],[2,7],[0,1],[4,6],[6,1],[0,6],[4,3],[1,7]], king = [3,4]
Output: [[2,3],[1,4],[1,6],[3,7],[4,3],[5,4],[4,5]]

Hints:
Check 8 directions around the King.
Find the nearest queen in each direction.

Find the Nearest Queen in Each Direction by Bruteforce Algorithm

We can start search in 8 directions from the position of the king, until we meet the nearest the Queen or the position has fall outside of the chess board.

In order to find if there is a queen in the current position, we can preprocess the list of given queens into a hash set.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public:
    vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens, vector<int>& king) {
        vector<vector<int>> r;
        int dir[][2] = {{0, 1}, {1, 0}, {1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {-1, 1}, {1, -1}};
        unordered_set<string> qs;
        for (const auto &q: queens) {
            qs.insert(std::to_string(q[0]) + "," + std::to_string(q[1]));
        }
        for (int i = 0; i < 8; ++ i) {
            int dx = dir[i][0];
            int dy = dir[i][1];
            vector<int> pos(king);
            while ((pos[0] >= 0) && (pos[0] < 8) &&
                (pos[1] >= 0) && (pos[1] < 8)) {
                pos[0] += dx;
                pos[1] += dy;
                if (qs.count(
                          std::to_string(pos[0]) + "," +
                          std::to_string(pos[1]))) {
                    r.push_back(pos);
                    break;
                }
            }
        }
        return r;
    }
};
class Solution {
public:
    vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens, vector<int>& king) {
        vector<vector<int>> r;
        int dir[][2] = {{0, 1}, {1, 0}, {1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {-1, 1}, {1, -1}};
        unordered_set<string> qs;
        for (const auto &q: queens) {
            qs.insert(std::to_string(q[0]) + "," + std::to_string(q[1]));
        }
        for (int i = 0; i < 8; ++ i) {
            int dx = dir[i][0];
            int dy = dir[i][1];
            vector<int> pos(king);
            while ((pos[0] >= 0) && (pos[0] < 8) &&
                (pos[1] >= 0) && (pos[1] < 8)) {
                pos[0] += dx;
                pos[1] += dy;
                if (qs.count(
                          std::to_string(pos[0]) + "," +
                          std::to_string(pos[1]))) {
                    r.push_back(pos);
                    break;
                }
            }
        }
        return r;
    }
};

Alternatively, we can use O(1) memory e.g. static board boolean flags.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public:
    vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens, vector<int>& king) {
        vector<vector<int>> r;
        int dir[][2] = {{0, 1}, {1, 0}, {1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {-1, 1}, {1, -1}};
        bool board[64];
        std::fill(begin(board), end(board), false);
        for (const auto &q: queens) {
            board[q[0] * 8 + q[1]] = true;
        }
        for (int i = 0; i < 8; ++ i) {
            int dx = dir[i][0];
            int dy = dir[i][1];
            vector<int> pos(king);
            while ((pos[0] >= 0) && (pos[0] < 8) &&
                (pos[1] >= 0) && (pos[1] < 8)) {
                pos[0] += dx;
                pos[1] += dy;
                if ((pos[0] >= 0) && (pos[0] < 8) && 
                    (pos[1] >= 0) && (pos[1] < 8) && 
                    board[pos[0] * 8 + pos[1]]) {
                    r.push_back(pos);
                    break;
                }
            }
        }
        return r;
    }
};
class Solution {
public:
    vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens, vector<int>& king) {
        vector<vector<int>> r;
        int dir[][2] = {{0, 1}, {1, 0}, {1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {-1, 1}, {1, -1}};
        bool board[64];
        std::fill(begin(board), end(board), false);
        for (const auto &q: queens) {
            board[q[0] * 8 + q[1]] = true;
        }
        for (int i = 0; i < 8; ++ i) {
            int dx = dir[i][0];
            int dy = dir[i][1];
            vector<int> pos(king);
            while ((pos[0] >= 0) && (pos[0] < 8) &&
                (pos[1] >= 0) && (pos[1] < 8)) {
                pos[0] += dx;
                pos[1] += dy;
                if ((pos[0] >= 0) && (pos[0] < 8) && 
                    (pos[1] >= 0) && (pos[1] < 8) && 
                    board[pos[0] * 8 + pos[1]]) {
                    r.push_back(pos);
                    break;
                }
            }
        }
        return r;
    }
};

As the board size is fixed 8×8, both the time and space complexity is O(1) constant.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
动物会认识数字吗?  三角形知识思维导图  如何用图表示等边三角形、等腰三角形、三角形之间的关系  保留几位小数一定是求近似数吗?  小数的读写法  小数的意义是什么?  井字形有几条射线  有效数字的定义  尾数的定义  关于除夕的作文400字 
评论列表
添加评论