Bruteforce or Line Sweep Algorithms to Remove Covered Intervals

  • 时间:2020-09-13 14:33:25
  • 分类:网络文摘
  • 阅读:107 次

Given a list of intervals, remove all intervals that are covered by another interval in the list. Interval [a,b) is covered by interval [c,d) if and only if c <= a and b <= d. After doing so, return the number of remaining intervals.

Example 1:
Input: intervals = [[1,4],[3,6],[2,8]]
Output: 2
Explanation: Interval [3,6] is covered by [2,8], therefore it is removed.

Constraints:
1 <= intervals.length <= 1000
0 <= intervals[i][0] < intervals[i][1] <= 10^5
intervals[i] != intervals[j] for all i != j

Hints:
How to check if an interval is covered by another?
Compare each interval to all others and check if it is covered by any interval.

Bruteforce Algorithm to Remove Covered Interval

Let’s use brute-force algorithm, which is the most intuitive solution. Brute force all possible pairs of intervals in O(N^2) time, then we use a vector to mark the validity of the intervals. A interval is set to be covered if its both ends are completely inside another one. Then, the result would be just to count the number of valid intervals in the boolean array – which we can use the std::accumulate if we want to avoid the for-loops (or while).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
    int removeCoveredIntervals(vector<vector<int>>& intervals) {
        int n = intervals.size();
        vector<bool> good(n, true);
        for (int i = 0; i < n; ++ i) {
            for (int j = i + 1; j < n; ++ j) {
                auto a = intervals[i];
                auto b = intervals[j];
                if (a[0] >= b[0] && a[1] <= b[1]) {
                    good[i] = false;
                } else if (b[0] >= a[0] && b[1] <= a[1]) {
                    good[j] = false;
                }
            }
        }
        return std::accumulate(begin(good), end(good), 0, [](int a, bool b) {
            return a + (b == true);
        });
    }
};
class Solution {
public:
    int removeCoveredIntervals(vector<vector<int>>& intervals) {
        int n = intervals.size();
        vector<bool> good(n, true);
        for (int i = 0; i < n; ++ i) {
            for (int j = i + 1; j < n; ++ j) {
                auto a = intervals[i];
                auto b = intervals[j];
                if (a[0] >= b[0] && a[1] <= b[1]) {
                    good[i] = false;
                } else if (b[0] >= a[0] && b[1] <= a[1]) {
                    good[j] = false;
                }
            }
        }
        return std::accumulate(begin(good), end(good), 0, [](int a, bool b) {
            return a + (b == true);
        });
    }
};

The brute force‘s time complexity is O(N^2) and the space requirement is O(N). As the problem statement says, the input array of intervals contains at most 1000, O(N^2) would be too slow.

Line Sweep Algorithm to Remove Covered Interval

Let’s sort the intervals first by the lower point, which if it is equal, then we put the one first with a bigger upper point. For example, [1, 2], [1, 5] and [2, 3] are sorted.

Then, we check if the current interval’s upper-bound is larger than the previous endpoint – which we need to increment the answer as the current interval is not covered. Also, when need to update the previous interval upper-bound accordingly. For example, [2, 3] is covered as 3 is smaller than previous end which is 5.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
    int removeCoveredIntervals(vector<vector<int>>& intervals) {
        if (intervals.empty()) return 0;
        sort(begin(intervals), end(intervals), [](auto &a, auto &b) {
            return a[0] == b[0] ? a[1] > b[1] : a[0] < b[0];
        });
        int count = 1;        
        int end = intervals[0][1];
        for (int i = 1; i < intervals.size(); ++ i) {
            if (intervals[i][1] > end) {
                count ++;
                end = intervals[i][1];
            }
        }
        return count;
    }
};
class Solution {
public:
    int removeCoveredIntervals(vector<vector<int>>& intervals) {
        if (intervals.empty()) return 0;
        sort(begin(intervals), end(intervals), [](auto &a, auto &b) {
            return a[0] == b[0] ? a[1] > b[1] : a[0] < b[0];
        });
        int count = 1;        
        int end = intervals[0][1];
        for (int i = 1; i < intervals.size(); ++ i) {
            if (intervals[i][1] > end) {
                count ++;
                end = intervals[i][1];
            }
        }
        return count;
    }
};

The time complexity is O(N.LogN) as the sorting dominates. And the space requirement is O(1) constant – as we are assuming the sorting does not require additional space e.g. iterative Quick Sorting Algorithm.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
齿轮齿数比的问题  哪些类型的网站不适合使用虚拟主机?  针对网站安全防护 探讨waf防火墙的作用  内容为王!百度搜索发布优质内容生产指南  搜狗SR值更新:好多网站SR值变1  SEO入门:三分钟带你了解权重  网站结构如何布局,会提高用户体验?  对于新站来说:如何让网站快速被搜索引擎收录呢?  网站内部优化细节流程(纯白帽SEO)  网站安全防止被黑客攻击的办法 
评论列表
添加评论