The Combination Function and Iterator using Depth First Search A

  • 时间:2020-09-13 14:33:25
  • 分类:网络文摘
  • 阅读:114 次

The combination algorithm returns the sequence for a list or string without considering the order. For example, the Combination of string “abc” with two characters would be “ab”, “ac” and “bc”.

The number of combination for n-size elements using m elements can be computed as:

combination-formula The Combination Function and Iterator using Depth First Search Algorithm algorithms c / c++ DFS python

combination-formula

For example, Picking 2 elements out of 3 has three solutions: 3!/(2!*(3-2)!) = 3

Solving Combination via DFS Algorithm

We can use the DFS (Depth First Search) algorithm to start picking elements until we have picked the desired number of items. For each iteration, we can choose to pick or not pick the current element. The DFS can be easily implemented via Recursion.

In the following C++ function, we define a recursive combination function that will push all the results into a vector (pass by reference). We pass a position variable and we will only pick in current iteration the elements to the right of this position.

1
2
3
4
5
6
7
8
9
10
11
12
void combination(string alphabeta, int toPick, vector<string> &result, string s = "", int pos = 0) {
    if (s.size() == toPick) { // found a solution
        result.push_back(s);            
    }
    if (pos == alphabeta.size()) { // reach the end of items
        return;
    }
    for (int i = pos; i < alphabeta.size(); ++ i) { 
        // picking this element, then start picking elements to the right
        combination(alphabeta, toPick, result, s + alphabeta[i], i + 1);
    }
}
void combination(string alphabeta, int toPick, vector<string> &result, string s = "", int pos = 0) {
    if (s.size() == toPick) { // found a solution
        result.push_back(s);            
    }
    if (pos == alphabeta.size()) { // reach the end of items
        return;
    }
    for (int i = pos; i < alphabeta.size(); ++ i) { 
        // picking this element, then start picking elements to the right
        combination(alphabeta, toPick, result, s + alphabeta[i], i + 1);
    }
}

However, the DFS may not be optimal, the complexity is N elements first iteration, N-1 second iteration etc thus N*(N-1)*(N-2)*…(N-M), roughly to O(N^M).

Python Combination Function

We can implement in Python the following combination function that works for both List and String:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def combinations(data, length):
    r = []
    def dfs(cur, pos):
        if len(cur) == length:
            r.append(cur)
        if pos == len(data):
            return
        if type(data) is list:
            for i in range(pos, len(data)):
                dfs(cur + [data[i]], i + 1)
        else:
            for i in range(pos, len(data)):
                dfs(cur + data[i], i + 1)
    if type(data) is list:        
        dfs([], 0)
    else:        
        dfs("", 0)
    return r
def combinations(data, length):
    r = []
    def dfs(cur, pos):
        if len(cur) == length:
            r.append(cur)
        if pos == len(data):
            return
        if type(data) is list:
            for i in range(pos, len(data)):
                dfs(cur + [data[i]], i + 1)
        else:
            for i in range(pos, len(data)):
                dfs(cur + data[i], i + 1)
    if type(data) is list:        
        dfs([], 0)
    else:        
        dfs("", 0)
    return r

A local recursive DFS function is defined, and we use type() to deal with the list (array) or the string. Example usage:

1
2
3
4
5
6
print(combinations([1, 2, 3, 4], 2))
>>>  [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
print(combinations(['a', 'b', 'c', 'd'], 2))
>>>  [['a', 'b'], ['a', 'c'], ['a', 'd'], ['b', 'c'], ['b', 'd'], ['c', 'd']]
print(combinations('abcd', 2))
>>>  ['ab', 'ac', 'ad', 'bc', 'bd', 'cd']
print(combinations([1, 2, 3, 4], 2))
>>>  [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
print(combinations(['a', 'b', 'c', 'd'], 2))
>>>  [['a', 'b'], ['a', 'c'], ['a', 'd'], ['b', 'c'], ['b', 'd'], ['c', 'd']]
print(combinations('abcd', 2))
>>>  ['ab', 'ac', 'ad', 'bc', 'bd', 'cd']

Python Combination Iterator

If we are not using all the combination results at once, we can modify the above Python algorithm to return a iterator – which avoids sucking up memory at once. Each result is yield-ed.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def combinations(data, length):
    def dfs(cur, pos):
        if len(cur) == length:
            yield cur
        if pos == len(data):
            return
        if type(data) is list:
            for i in range(pos, len(data)):
                for j in dfs(cur + [data[i]], i + 1):
                    yield j
        else:
            for i in range(pos, len(data)):
                for j in dfs(cur + data[i], i + 1):
                    yield j
    if type(data) is list:        
        return dfs([], 0)
    else:        
        return dfs("", 0)
def combinations(data, length):
    def dfs(cur, pos):
        if len(cur) == length:
            yield cur
        if pos == len(data):
            return
        if type(data) is list:
            for i in range(pos, len(data)):
                for j in dfs(cur + [data[i]], i + 1):
                    yield j
        else:
            for i in range(pos, len(data)):
                for j in dfs(cur + data[i], i + 1):
                    yield j
    if type(data) is list:        
        return dfs([], 0)
    else:        
        return dfs("", 0)

As the combinations function now returns an iterator, we can use it like this:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
for i in combinations_iterator([1, 2, 3, 4], 2):
    print(i)
# [1, 2]
# [1, 3]
# [1, 4]
# [2, 3]
# [2, 4]
# [3, 4]
for i in combinations_iterator(['a', 'b', 'c', 'd'], 2):
    print(i)
# ['a', 'b']
# ['a', 'c']
# ['a', 'd']
# ['b', 'c']
# ['b', 'd']
# ['c', 'd']
for i in combinations_iterator('abcd', 2):
    print(i)
# ab
# ac
# ad
# bc
# bd
# cd
for i in combinations_iterator([1, 2, 3, 4], 2):
    print(i)
# [1, 2]
# [1, 3]
# [1, 4]
# [2, 3]
# [2, 4]
# [3, 4]
for i in combinations_iterator(['a', 'b', 'c', 'd'], 2):
    print(i)
# ['a', 'b']
# ['a', 'c']
# ['a', 'd']
# ['b', 'c']
# ['b', 'd']
# ['c', 'd']
for i in combinations_iterator('abcd', 2):
    print(i)
# ab
# ac
# ad
# bc
# bd
# cd
python The Combination Function and Iterator using Depth First Search Algorithm algorithms c / c++ DFS python

python

Another interesting read to implement the combination using bitmasking algorithm: Using Bitmasking Algorithm to Compute the Combinations of an Array

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
数学题:求MN的长是多少  数学题:小红上学时坐车,回家步行  数学题:某班在植树活动中  数学题:三只猴子吃篮子里的桃子  数学题-实际比计划增加25%  甲植树的棵数是另外两人的二分之一  甲容器水深比乙容器水深低6厘米  第一次剪下2/5,又接上18米  小星的妈妈用20000元购进了一批货物  关于水槽装水的数学题 
评论列表
添加评论