Dynamic Programming Algorithm to Compute the Block Sum in a Matr
- 时间:2020-09-10 12:45:51
- 分类:网络文摘
- 阅读:87 次
Given a m * n matrix mat and an integer K, return a matrix answer where each answer[i][j] is the sum of all elements mat[r][c] for i – K <= r <= i + K, j – K <= c <= j + K, and (r, c) is a valid position in the matrix.
Example 1:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 1
Output: [[12,21,16],[27,45,33],[24,39,28]]Example 2:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 2
Output: [[45,45,45],[45,45,45],[45,45,45]]Constraints:
m == mat.length
n == mat[i].length
1 <= m, n, K <= 100
1 <= mat[i][j] <= 100Hints:
How to calculate the required sum for a cell (i,j) fast ?
Use the concept of cumulative sum array.
Create a cumulative sum matrix where dp[i][j] is the sum of all cells in the rectangle from (0,0) to (i,j), use inclusion-exclusion idea.
Matrix Block Sum using Dyanmic Programming Algorithm
We can do this in most straighforward solution. We compute the region of the blocks i.e. top-left corner and bottom-right corner, then we apply another loop to compute the sum of the block. This will be O(R^2.C^2) where R is the rows and C is the columns of the matrix.
We can use the Dynamic Programming Algorithm to store the partial prefix sum of the matrix in i.e. DP array. This will take O(RC) to compute and O(RC) space requirement is needed. Then as we iterate again the coordinate of the matrix, we compute the two corners of the block. Then we can use the prefix sum in the DP array to compute the sum of the block.
Sum of Block for the Matrix from top-left corner [a][b] to bottom-right [c][d] is equal to
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | class Solution { public: vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int K) { int row = mat.size(); if (row == 0) return {{}}; int col = mat[0].size(); vector<vector<int>> res(row, vector<int>(col, 0)); vector<vector<int>> dp(row, vector<int>(col, 0)); // store the sum in dp[r][c] where the sum from [0, 0] to [r, c] is computed. for (int r = 0; r < row; ++ r) { for (int c = 0; c < col; ++ c) { int sum = mat[r][c]; if (c > 0) sum += dp[r][c - 1]; if (r > 0) sum += dp[r - 1][c]; if ((r > 0) && (c > 0)) sum -= dp[r - 1][c - 1]; dp[r][c] = sum; } } for (int r = 0; r < row; ++ r) { for (int c = 0; c < col; ++ c) { int minr = max(0, r - K); int minc = max(0, c - K) ; int maxr = min(r + K, row - 1); int maxc = min(c + K, col - 1); if (minr > 0 && minc > 0) { res[r][c] = dp[maxr][maxc] + dp[minr - 1][minc - 1] - dp[minr - 1][maxc] - dp[maxr][minc - 1]; } else if (minr > 0) { res[r][c] = dp[maxr][maxc] - dp[minr - 1][maxc]; } else if (minc > 0) { res[r][c] = dp[maxr][maxc] - dp[maxr][minc - 1]; } else { res[r][c] = dp[maxr][maxc]; } } } return res; } }; |
class Solution { public: vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int K) { int row = mat.size(); if (row == 0) return {{}}; int col = mat[0].size(); vector<vector<int>> res(row, vector<int>(col, 0)); vector<vector<int>> dp(row, vector<int>(col, 0)); // store the sum in dp[r][c] where the sum from [0, 0] to [r, c] is computed. for (int r = 0; r < row; ++ r) { for (int c = 0; c < col; ++ c) { int sum = mat[r][c]; if (c > 0) sum += dp[r][c - 1]; if (r > 0) sum += dp[r - 1][c]; if ((r > 0) && (c > 0)) sum -= dp[r - 1][c - 1]; dp[r][c] = sum; } } for (int r = 0; r < row; ++ r) { for (int c = 0; c < col; ++ c) { int minr = max(0, r - K); int minc = max(0, c - K) ; int maxr = min(r + K, row - 1); int maxc = min(c + K, col - 1); if (minr > 0 && minc > 0) { res[r][c] = dp[maxr][maxc] + dp[minr - 1][minc - 1] - dp[minr - 1][maxc] - dp[maxr][minc - 1]; } else if (minr > 0) { res[r][c] = dp[maxr][maxc] - dp[minr - 1][maxc]; } else if (minc > 0) { res[r][c] = dp[maxr][maxc] - dp[maxr][minc - 1]; } else { res[r][c] = dp[maxr][maxc]; } } } return res; } };
Overall, the algorithmic complexity of the above Dynamic Programming is O(RC).
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:Coding Interview Tips for Software Engineers A Math Problem: How old is everybody in the Family? String/Object in Array Testing in Java – using Arrays.asLi Algorithm to Compute the Revenue Milestones How to Modify the Git Commit Messages After Your Push Your Branc Personal Cloud Options to Backup Data and Photos Greedy Algorithm to Find the Lexicographically Smallest Sequence ReactiveX/RxJava Tutorial: Compute the Fibonacci Numbers using R What are Big4 Tech Companies looking for in the technical interv Design a Moving Average Class for Data Stream
- 评论列表
-
- 添加评论