Dynamic Programming Algorithm to Compute the Max Dot Product of
- 时间:2020-09-08 11:08:55
- 分类:网络文摘
- 阅读:126 次
Given two arrays nums1 and nums2. Return the maximum dot product between non-empty subsequences of nums1 and nums2 with the same length.
A subsequence of a array is a new array which is formed from the original array by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, [2,3,5] is a subsequence of [1,2,3,4,5] while [1,5,3] is not).
Example 1:
Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6]
Output: 18
Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from nums2.
Their dot product is (2*3 + (-2)*(-6)) = 18.Example 2:
Input: nums1 = [3,-2], nums2 = [2,-6,7]
Output: 21
Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2.
Their dot product is (3*7) = 21.Example 3:
Input: nums1 = [-1,-1], nums2 = [1,1]
Output: -1
Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2.
Their dot product is -1.Constraints:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 1000Hint:
Use dynamic programming, define DP[i][j] as the maximum dot product of two subsequences starting in the position i of nums1 and position j of nums2.
Compute the Max Dot Product of Two Subsequences
We can use DFS (Depth First Search) to enumerate the possible subsequences combination of both, but the complexity is exponetial. The key to solve this problem is to re-use the intermediate results, via Dynamic Programming algorithm.
We use a two-dimensional array dp[i][j] to represent the maxium dot product of two subsequences that end with index i and j respectively for two subsequences. Then dp[i][j] should the maximum of these values: num1[i]*num2[j], dp[i-1][j], dp[i][j-1], dp[i-1][j-1], dp[i-1][j-1]+nums1[i]*nums2[j].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | class Solution { public: int maxDotProduct(vector<int>& nums1, vector<int>& nums2) { int m = nums1.size(), n = nums2.size(); if (!m || !n) return 0; vector<vector<int>> dp(m, vector<int>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { dp[i][j] = nums1[i] * nums2[j]; if (i-1 >= 0) dp[i][j] = max(dp[i-1][j], dp[i][j]); if (j-1 >= 0) dp[i][j] = max(dp[i][j-1], dp[i][j]); if (i-1 >= 0 && j-1>= 0) { dp[i][j] = max(dp[i][j], dp[i-1][j-1] + nums1[i]*nums2[j]); dp[i][j] = max(dp[i][j], dp[i-1][j-1]); } } } return dp[m-1][n-1]; } }; |
class Solution {
public:
int maxDotProduct(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
if (!m || !n) return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
dp[i][j] = nums1[i] * nums2[j];
if (i-1 >= 0) dp[i][j] = max(dp[i-1][j], dp[i][j]);
if (j-1 >= 0) dp[i][j] = max(dp[i][j-1], dp[i][j]);
if (i-1 >= 0 && j-1>= 0) {
dp[i][j] = max(dp[i][j], dp[i-1][j-1] + nums1[i]*nums2[j]);
dp[i][j] = max(dp[i][j], dp[i-1][j-1]);
}
}
}
return dp[m-1][n-1];
}
};Complexity is quadric O(N^2) – and the space requirement is O(N^2) as well. The answer is dp[m-1][n-1] where m and n are the lengths of both sequences respectively.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:采蘑菇数学题 小红可能在什么时间去摘西红柿 称螺丝的数学题 一乘二分之一加二乘三分之一加…九十九乘一百分之一加一百乘一百零一分之一等于多少?求答题过程和答案。 为什么所有剩下的钱加起来是51元? 十二个乒乓球特征相同,其中只有一个重量异常 某银行有两种储蓄计划——单利和复利的问题 大院里养了三种动物。每只小山羊戴3个铃铛,每只狗戴1个铃铛 某本书正文所标注的页码共用了2989个阿拉伯数字,问这本书的正文一共有多少页? 有两棵古槐树,500年前有个学者说
- 评论列表
-
- 添加评论