Dynamic Programming Algorithm to Compute the Max Dot Product of
- 时间:2020-09-08 11:08:55
- 分类:网络文摘
- 阅读:148 次
Given two arrays nums1 and nums2. Return the maximum dot product between non-empty subsequences of nums1 and nums2 with the same length.
A subsequence of a array is a new array which is formed from the original array by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, [2,3,5] is a subsequence of [1,2,3,4,5] while [1,5,3] is not).
Example 1:
Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6]
Output: 18
Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from nums2.
Their dot product is (2*3 + (-2)*(-6)) = 18.Example 2:
Input: nums1 = [3,-2], nums2 = [2,-6,7]
Output: 21
Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2.
Their dot product is (3*7) = 21.Example 3:
Input: nums1 = [-1,-1], nums2 = [1,1]
Output: -1
Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2.
Their dot product is -1.Constraints:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 1000Hint:
Use dynamic programming, define DP[i][j] as the maximum dot product of two subsequences starting in the position i of nums1 and position j of nums2.
Compute the Max Dot Product of Two Subsequences
We can use DFS (Depth First Search) to enumerate the possible subsequences combination of both, but the complexity is exponetial. The key to solve this problem is to re-use the intermediate results, via Dynamic Programming algorithm.
We use a two-dimensional array dp[i][j] to represent the maxium dot product of two subsequences that end with index i and j respectively for two subsequences. Then dp[i][j] should the maximum of these values: num1[i]*num2[j], dp[i-1][j], dp[i][j-1], dp[i-1][j-1], dp[i-1][j-1]+nums1[i]*nums2[j].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | class Solution { public: int maxDotProduct(vector<int>& nums1, vector<int>& nums2) { int m = nums1.size(), n = nums2.size(); if (!m || !n) return 0; vector<vector<int>> dp(m, vector<int>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { dp[i][j] = nums1[i] * nums2[j]; if (i-1 >= 0) dp[i][j] = max(dp[i-1][j], dp[i][j]); if (j-1 >= 0) dp[i][j] = max(dp[i][j-1], dp[i][j]); if (i-1 >= 0 && j-1>= 0) { dp[i][j] = max(dp[i][j], dp[i-1][j-1] + nums1[i]*nums2[j]); dp[i][j] = max(dp[i][j], dp[i-1][j-1]); } } } return dp[m-1][n-1]; } }; |
class Solution {
public:
int maxDotProduct(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
if (!m || !n) return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
dp[i][j] = nums1[i] * nums2[j];
if (i-1 >= 0) dp[i][j] = max(dp[i-1][j], dp[i][j]);
if (j-1 >= 0) dp[i][j] = max(dp[i][j-1], dp[i][j]);
if (i-1 >= 0 && j-1>= 0) {
dp[i][j] = max(dp[i][j], dp[i-1][j-1] + nums1[i]*nums2[j]);
dp[i][j] = max(dp[i][j], dp[i-1][j-1]);
}
}
}
return dp[m-1][n-1];
}
};Complexity is quadric O(N^2) – and the space requirement is O(N^2) as well. The answer is dp[m-1][n-1] where m and n are the lengths of both sequences respectively.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:如何分析优化竞价推广效果 竞价推广效果差怎么办?从这8个维度分析着手优化 小说网站建站赚钱怎么操作? 做什么网站赚钱?试试小说网站吧 百度冰桶算法说明,如何避免冰桶算法呢? 百度飓风算法版本类型说明,如何破解飓风算法呢 最少要付多少元的租金 此时水的高度是多少 将原有水果卖出40%后 求这五个整数的平均数
- 评论列表
-
- 添加评论